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Imitation of Life

Brian Hayes

Almost 30 years ago, Harold 
J. Morowitz, who was then at 

Yale, set forth a bold plan for molecu-
lar biology. He outlined a campaign to 
study one of the smallest single-celled 
organisms, a bacterium of the genus 
Mycoplasma. The first step would be to 
decipher its complete genetic sequence, 
which in turn would reveal the amino 
acid sequences of all the proteins in the 
cell. In the 1980s reading an entire ge-
nome was not the routine task it is to-
day, but Morowitz argued that the anal-
ysis should be possible if the genome 
was small enough. He calculated the in-
formation content of mycoplasma DNA 
to be about 160,000 bits, then added: 

Alternatively, this much DNA 
will code for about 600 proteins—
which suggests that the logic of 
life can be written in 600 steps. 
Completely understanding the 
operations of a prokaryotic cell is 
a visualizable concept, one that is 
within the range of the possible.

There was one more intriguing ele-
ment to Morowitz’s plan:

At 600 steps, a computer model 
is feasible, and every experiment 
that can be carried out in the labo-
ratory can also be carried out on 
the computer. The extent to which 
these match measures the com-
pleteness of the paradigm of mo-
lecular biology.

Looking back on these proposals 
from the modern era of industrial-scale 
genomics and proteomics, there’s no 
doubt that Morowitz was right about 
the feasibility of collecting sequence 
data. On the other hand, the challenges 
of writing down “the logic of life” in 

600 steps and “completely understand-
ing” a living cell still look fairly daunt-
ing. And what about the computer 
program that would simulate a living 
cell well enough to match experiments 
carried out on real organisms?

As it happens, a computer program 
with exactly that goal was published 
last summer by Markus W. Covert of 
Stanford University and eight cowork-
ers. The program, called the WholeCell 
simulation, describes the full life cycle 
of Mycoplasma genitalium, a bacterium 
from the genus that Morowitz had 
suggested. Included in the model are 
all the major processes of life: tran-
scription of DNA into RNA, transla-
tion of RNA into protein, metabolism 
of nutrients to produce energy and 
structural constituents, replication of 
the genome, and ultimately reproduc-
tion by cell fission. The outputs of the 
simulation do seem to match experi-
mental results. So the question has to 
be faced: Are we on the threshold of 
“completing” molecular biology?

The Smallest Life Forms
Bacteria of the genus Mycoplasma are 
attractive for experiments of this kind 
because they are the smallest and ar-
guably the simplest self-replicating or-
ganisms. (Viruses are smaller, but they 
can reproduce only by hijacking the 
biochemical machinery of a host cell.) 

When mycoplasmas were first ob-
served in the 19th century, they were 

thought to be fungi (hence the pre-
fix myco-, from the Greek root μύκης, 
meaning fungus). The organisms 
are now classified among the bacte-
ria, but they are peculiar members 
of that kingdom. They lack the rigid 
cell wall that encases other bacteria, 
having only a lipid membrane. One 
consequence is that mycoplasmas are 
resistant to many antibiotics, notably 
those that work by interfering with the 
synthesis of cell wall components. My-
coplasmas cause a number of human 
ailments as well as diseases of other 
animals and also plants. Perhaps the 
best known of the human pathologies 
is a lung infection sometimes called 
“walking pneumonia.”

M. genitalium, the organism cho-
sen for the Covert group’s computer 
model, has been known to science only 
since 1980, when it was isolated from 
a few patients with urethritis. Even 
among mycoplasmas, M. genitalium is 
a diminutive cell, with a diameter of 
roughly half a micrometer. The better-
known bacterium Escherichia coli, by 
contrast, is two micrometers long, with 
a volume roughly 50 times as large. M. 
genitalium is also tiny in terms of its ge-
netic complement. The single circular 
chromosome has 580,076 base pairs 
of DNA and just 525 identified genes 
(even fewer than Morowitz estimated). 
The E. coli genome is about 4.6 million 
base pairs with 4,300 genes.

The compact cells and concise ge-
nome of mycoplasmas make them a 
useful test bed not just for software but 
also for “wetware” explorations of the 
minimal apparatus needed to sustain 
life. One notable experiment of this 
kind was reported in 2010 by J. Craig 
Venter, Clyde A. Hutchison III, Hamil-
ton O. Smith and others at the J. Craig 
Venter Institute. They sequenced the ge-
nome of a particular mycoplasma, stor-
ing the list of bases as a computer file; 
then they made a few edits that would 
serve as an identifiable “watermark” 
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and synthesized DNA corresponding to 
the altered sequence. Finally—and this 
was the hard part—they inserted the 
manufactured DNA into cells of an-
other mycoplasma species, replacing 
the native genetic material. The cells 
grew and reproduced entirely under 
the direction of the artificial genome. 
The experiment can be viewed as a 

step toward creating a wholly synthet-
ic life form.

In some respects, simulating life 
with a digital computer is even hard-
er than synthesizing it from chemical 
components. Given the right ingredi-
ents, a biologist might be able to as-
semble a living cell without fully un-
derstanding all the details of how the 

parts interact. The computer program-
mer, however, must describe every 
molecular event. 

Modes of Modeling
Building a computer model calls for 
a multitude of choices and compro-
mises in finding the appropriate level 
of detail. Take the case of carbohydrate 

Mycoplasma mycoides, one of the smallest and simplest of free-living organisms, is crammed full of macromolecules and organelles in a wa-
tercolor painting by David S. Goodsell of the Scripps Research Institute. The tan, twinelike substance is the DNA of the closed-loop bacterial 
chromosome. Near the center of the painting is a replication fork, where a DNA polymerase complex (orange) is duplicating the cell’s genome 
in preparation for eventual cell division. Due north of the replication fork is one of several RNA polymerase molecules (also orange), where 
the DNA is transcribed into messenger RNA. Magenta structures are ribosomes, which translate messenger RNA into protein. The dense green 
mane surrounding the cell consists of carbohydrate chains attached to the lipid membrane. The subject of the recent WholeCell computer 
model is an even smaller mycoplasma, M. genitalium.
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metabolism, in which sugars such as 
glucose break down to yield water and 
carbon dioxide. At the most abstract 
level, this process becomes a single 
chemical equation:

C6H12O6 + 6O2 → 6CO2 + 6H2O,

which doesn’t reveal much about 
what’s actually happening inside the 
cell. A closer look would add dozens 
of intermediate steps. For example, 
the six-carbon glucose molecule is first 
split into two three-carbon pyruvate 
molecules, liberating energy that can 
be captured in the phosphate bonds of 
adenosine triphosphate (ATP). 

Adding still more detail leads to a 
vast web of chemical reactions, as in 
the famous Metabolic Pathways poster 
devised by the late Donald E. Nich-
olson. And one needn’t stop there. In 
principle a simulation could follow 
every individual molecule—or every 
atom, for that matter—as it passes 
through the cellular machinery. The 
Goldilocks strategy seeks a middle 
path between bland abstraction and 
pointless verisimilitude.

The authors of the WholeCell proj-
ect chose to implement different parts 
of their model with different levels of 
detail. Certain key macromolecules are 
represented as distinct and identifiable 
entities. Smaller molecules are treated 
as aggregated quantities; the program 
keeps track of their numbers but not of 
their identity as individuals. 

The distinction between these two 
modes of representation can be seen 
clearly in the sector of the model dealing 
with protein synthesis. Ribosomes, the 
large organelles where proteins are as-
sembled, are represented as individuals; 
each ribosome has its own identity and 
history. Within the computer program, 
a separate block of memory is allocated 
to each ribosome. But the program has 
no representation for individual mol-
ecules of amino acids, the subunits that 
are linked together to form a protein. 
Instead the model merely keeps track of 
the quantity of each type of amino acid. 
There’s a variable for counting all the 
alanine molecules, another variable for 
the lysines, and so on.

The WholeCell model is divided 
into 28 process modules, which corre-
spond to major cellular activities such 
as replication of the genome, synthe-
sis of protein and repair of damaged 
DNA. In addition, 16 data structures 
called state variables record the cur-
rent status of various subsystems at 

every instant. The program begins by 
initializing the state variables to val-
ues appropriate to a “newborn” cell, 
just after cell division. Next, all 28 of 
the process modules are run for one 
second of simulated time. At the end 
of this interval the state variables are 
updated with the results of the cal-
culations, and then the cycle repeats. 
The simulation continues until the cell 
completes its growth and divides. For 
M. genitalium this generation time is 
typically nine hours, or roughly 32,000 
repetitions of the simulation loop. 
Running time for the program is about 
the same as the generation time.

The program is written in matlab. 
Source code is available on the project 
web page at http://wholecell.stanford.
edu, along with a knowledge base of 
quantitative information that went into 
building the model.

Together with Covert, the principal 
authors of the software are Jonathan 
R. Karr and Jayodita C. Sanghvi, who 
are both graduate students in Covert’s 
group. The model is described in a 
report published last July in Cell; the 
authors, in addition to Karr, Sanghvi 
and Covert, are Derek N. Macklin, 
Miriam V. Gutschow, Jared M. Jacobs 
and Benjamin Bolival Jr. of Stanford 
and Nacyra Assad-Garcia and John I. 
Glass of the Venter Institute.

The Engine Room
In trying to get a sense of how the 
WholeCell simulation works, I chose 
three modules for close examination. 
They are the modules for metabolism, 
for the transcription of genetic infor-
mation and for the size and shape of 
the growing cell.

The metabolism module is where 
most of the classical biochemistry hap-
pens. Here we are in the blue-collar 
sector of the cell’s economy, dealing 
with energy production, manufactur-
ing and the handling of raw materials 
and wastes. (Most of the other modules 
are more concerned with white-collar 
chores of information processing.)

Even in a cell as tiny as M. genita-
lium, metabolism involves a bewil-
dering maze of interlinked chemical 
processes. The metabolism module of 
the WholeCell model includes 104 en-
zymes, 585 substrates, 441 chemical 
reactions and 204 transport processes.

The size and complexity of this net-
work foils many conventional meth-
ods of analysis. The rate of any given 
chemical reaction depends in part on 

the concentrations of the reactants and 
the products. But the products of one 
reaction are the inputs to another, so 
all the processes are closely coupled 
and cannot be solved independently. 
An added complication is that biologi-
cal networks include cycles, such as 
the citric acid cycle of carbohydrate 
metabolism. With a cycle, the products 
of a given reaction may go all the way 
around the loop and reappear as in-
puts to the same reaction, so that the 
overall flux of material through the 
network is not uniquely defined.

To sidestep these difficulties, the 
WholeCell metabolic module relies 
on a methodology called flux-balance 
analysis. The underlying idea is that 
even if a reaction network does not 
have a unique solution, it may well 
have a best solution. The process for 
finding that solution is much like the 
algorithm used to optimize the opera-
tions of a chemical plant or an oil re-
finery. Suppose a refinery has a range 
of products (gasoline, diesel fuel and 
so on), which differ in manufactur-
ing cost and market value. The math-
ematical technique of linear program-
ming computes a mix of products that 
maximizes profit. Applying the same 
method to the living cell yields a set of 
reaction rates that make the most ef-
ficient use of available resources, such 
as nutrients. (It’s not known with cer-
tainty that microorganisms optimize 
their growth in this way, but it’s a 
plausible assumption in the context of 
Darwinian natural selection.)

The Scribe
The computations performed in the 
transcription module are quite differ-
ent from those of the metabolic sub-
unit. Instead of linear programming, 
we have discrete events governed by 
probabilities.

Transcription of a gene begins when 
a molecule of the enzyme RNA poly-
merase binds to a chromosomal site 
called a promoter. The enzyme then 
ratchets along the double helix, produc-
ing a strand of messenger RNA whose 
sequence is complementary to that of 
one DNA strand. When the transcript 
is complete, the polymerase drops off 
the double helix and releases the RNA. 
Each step in this process requires a 
variety of other molecules—initiation 
factors, elongation factors, termination 
factors, energy donors—as well as a 
supply of nucleotides to be incorpo-
rated into the growing RNA strand.
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In the WholeCell system, each RNA 
polymerase molecule is an individual 
object with four possible states: active-
ly transcribing, bound to a promoter 
region, bound to DNA elsewhere and 
unbound. Transitions between the 
states are random events with prob-
abilities calculated to match the ex-
perimentally observed distribution. 
Also, various promoter sites differ in 
their affinity for RNA polymerase, so 
the probability of binding is higher in 
some places than others.

Because of probabilistic events like 
these, the WholeCell model has an ele-
ment of nondeterminism. Every run 
can be expected to produce somewhat 
different results, even with the same 
initial conditions and environment. 
But of course fluctuations and chance 

events also have a role in real biology; 
even perfect clones will not follow ex-
actly the same trajectory through life.

Reading the source code of the 
transcription module gives some 
vivid glimpses of the subtleties that 
a wary modeler must keep in mind. 
Suppose a roll of the digital dice dic-
tates that a certain RNA polymerase 
molecule is to bind to a promoter site. 
What happens if all the promoter sites 
are already occupied? What happens 
if two polymerase molecules try to 
grab the same promoter site at the 
same time? What if two transcription 
enzymes collide as they move along 
the DNA? Nature seems to handle 
such conflicts without having to think 
about them, but the modeler has to 
think of everything. 

Collisions between enzymes scut-
tling along the chromosome are not 
rare events. Results of the Whole-
Cell simulation suggest they happen 
about once per second, or perhaps 
30,000 times in the course of a full 
cell cycle. The model is therefore 
equipped with rules to decide who 
has the right of way.

On Growth and Form
The WholeCell model is not greatly 
concerned with details of spatial or-
ganization. The metabolic module 
treats the cell as if it were a well-stirred 
reactor vessel, where all molecules 
have the same chances of interacting, 
regardless of their location. Transcrip-
tion and replication enzymes occupy 
specific positions along the bacterial 

The WholeCell model is organized into 16 state variables and 28 process modules. The state variables keep track of the changing status of various 
aspects of the organism’s physiology. A few of the variables, such as mass and time, are simple numerical quantities, but most of the variables 
are more elaborate data structures; for example, each RNA polymerase molecule and each ribosome has its own individual record. The process 
modules carry out the actual steps of the simulation, including such major activities as replicating the genome, transcribing DNA into RNA and 
translating RNA into protein. The metabolism module includes the large network of chemical reactions that supply energy and raw materials. 
Colored lines indicate which state variables communicate with which processes. The bars at far right show the number of genes that contribute 
to each module. (Not all of the bacterium’s 525 genes are included in this tabulation.) The overall structure of the simulation program is a simple 
loop: The process modules read the current values of the state variables, calculate what happens during one second of simulated time, and then 
update the variables. This loop repeats until the life cycle of the bacterium is completed after about nine hours.
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chromosome, but the coordinates are 
one-dimensional, measured with re-
spect to the linear genetic sequence; 
they do not define position in three-
dimensional space.

Nevertheless, the simulation does 
include a state variable for cell geom-
etry, which describes the bacterium’s 
shape and eventual fission. Curiously, 
the shape defined by the simulation 
is not in fact that of the biological cell. 
M. genitalium is usually described as 
having a flask or pear shape—a ball 
with a single asymmetrical append-
age. Including this detail would com-
plicate the model without revealing 
anything of biological significance, so 
the simulated cell is given a simpler 
geometry. It begins as a small sphere 
and elongates into a cylinder with 
hemispherical end caps. At the end of 
the life cycle, after the two copies of 
the genome have migrated to oppo-
site poles of the cell, the middle of the 
cylinder begins to constrict and then 
pinches off to form two new cells.

The rules of cell growth are not 
hard to understand: As the volume of 
the cytoplasm increases, the enclos-
ing membrane must grow in surface 
area by a commensurate amount. The 
mechanics of cell division are more 
mysterious, but the model nonethe-
less gives a tentative account. The key 
component is a protein called FtsZ, 
which forms a ring girdling the cell in 
the plane where the two daughter cells 
ultimately part company.

Fitting an Elephant
The WholeCell model is based on data 
collected from 900 publications. Some 
1,900 numerical values were extracted 
from these sources to become param-
eters of the model. This is an impressive 
compendium, which anchors the simu-
lation in real data. 

However, a slate of 1,900 parameters 
also raises a red flag. If each parameter 
represents a control knob that can be 
turned to adjust the model’s behavior, 
then by twiddling enough of the knobs, 
the output could be “fitted” to just 
about any desired result. When I asked 
Covert about this, he immediately cited 
John von Neumann’s quip, “With four 
parameters I can fit an elephant, and 
with five I can make him wiggle his 
trunk.” But Covert went on to say that 
the 1,900 WholeCell parameters have 
not been used for knob-twiddling or 
trunk-wiggling. Almost all of the values 
were taken directly from experimen-

tal measurements. They constrain the 
model rather than adapt it to a precon-
ceived outcome.

Yet that’s not quite the end of the 
story. The data come from many differ-
ent experiments conducted by differ-
ent workers over a period of decades. 
Quite a few parameters come from 
organisms other than M. genitalium, 
simply because not enough is known 
about mycoplasma physiology. Given 
these disparate sources, it’s not sur-
prising that the measured parameters 
are not always consistent. For exam-
ple, an inventory of cell contents (pub-
lished by Morowitz 50 years ago) sug-
gested that mycoplasmas have only 
trace amounts of the amino acid cys-
teine, whereas analysis of the genome 
showed a notably greater need for cys-
teine in mycoplasma proteins. Such 
inconsistencies must be reconciled if 
the simulation is to succeed.

Covert and his colleagues tackled 
this problem by formulating a system of 
constraints, then searching for param-
eter values that satisfy the constraints 
while deviating as little as possible 
from the measured values. Initially they 
tried formal optimization algorithms, 
but these methods failed to converge 
on a feasible solution. They therefore 
adopted a heuristic approach, starting 
from the parameters that are deemed 
most reliable. Some such reconciliation 
procedure will remain necessary until 
more complete and accurate biochemi-
cal data become available.

In the meantime, the simulations 
reported in the Cell paper do give 
physiologically plausible results. The 
duration of the cell cycle, the rate of 
growth in biomass and the concentra-
tions of various metabolites are all rea-
sonably close to values measured in 
real cells. Further support for the mod-
el’s robustness comes from a series 
of “knockout” experiments, in which 
single genes are deleted from the chro-
mosome. After multiple model runs, a 
gene is classified as essential if losing it 
compromises viability. The simulation 
results agree with in vivo experiments 
on 79 percent of the genes.

Still another finding extends and 
explains known results. The myco-
plasma cell cycle has an early phase of 
genome replication, in which the bind-
ing of enzymes initiates the process, 
and a later phase, in which the repli-
cation itself proceeds. Each of these 
phases varies in length, and yet their 
sum—the length of the overall cycle—

shows comparatively little variation. 
Examination of the internal details of 
the model revealed the cause of this 
odd behavior. The nucleotides needed 
to synthesize the new chromosome are 
manufactured throughout the cell life-
time. If the early stage of replication 
is brief, the later stage is slowed by a 
shortage of nucleotides. If the early 
stage is prolonged, the stockpile of nu-
cleotides is sufficient to support full-
speed replication. 

Reductionism Redux
The idea of building artificial life 
forms, whether in software or in syn-
thetic cytoplasm, has always been 
controversial. Mary Shelley, almost 
200 years ago, wrote a deep medita-
tion on this theme: Frankenstein, or the 
Modern Prometheus. In Shelley’s time 
the debate was framed in terms of 
vitalism versus mechanism. The vi-
talists argued that living things are 
distinguished from inorganic matter 
by some “spark of life” or animating 
principle. The opposing mechanist 
view had its greatest early champion 
in René Descartes, who compared ani-
mals to clockwork automata.

Within the world of science, the doc-
trine of vitalism is long dead, and yet 
there is still resistance to the idea that 
life is something we can fully compre-
hend by disassembling an organism 
and cataloging its component parts. 
In the brash early years of molecular 
biology, DNA was “the blueprint of 
life,” a full set of instructions for build-
ing a cell. The core process of life was 
seen as symbol manipulation, a mat-
ter of pairing G with C and A with T, 
then mapping the 4-letter alphabet of 
nucleotides into the 20-letter alphabet 
of amino acids. If only we could learn 
to read the blueprints and decipher 
the genetic messages, we would know 
everything about how life works. Now 
that we read DNA sequences quite flu-
ently, it seems clearer that there’s more 
to life than the “central dogma” of mo-
lecular biology.

The idea of simulating a living cell 
with a computer program stands in 
the crossfire of this argument between 
reductionism and a more integrative 
vision of biology. On one hand, the 
WholeCell project makes abundantly 
clear that the DNA sequence by itself is 
not the master key to life. Even though 
the transfer of information from DNA 
to RNA to protein is a central element of 
the model, it is not handled as a simple  
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mapping between alphabets. The em-
phasis is on molecules, not symbols.

On the other hand, the very attempt 
to build such a model is a declaration 
that life is comprehensible, that there’s 
nothing supernatural about it, that it 
can be reduced to an algorithm—a 
finite computational process. Every-
thing that happens in the simulated 
cell arises from rules that we can enu-
merate and understand, for the simple 
reason that we wrote those rules.

I would love to believe that the suc-
cess of simulation methods in biology 
might forge a new synthesis and put 
an end to philosophical bickering over 
these questions. I’m not holding my 
breath.
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