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Repressor inactive, operon on. When the inducer allolactose binds
to the repressor protein, the inactivated repressor can no longer block
transcription. The structural genes are transcribed, ultimately resulting
in the production of the enzymes needed for lactose catabolism.
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Operon model

(a) Bacteria growing on
glucose as the sole carbon
source grow faster than on
lactose.
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(b) Bacteria growing in a
and lactose first consume
the glucose and then, after a
short lag time, the lactose.
During the lag time, intra-
cellular cAMP increases, the
operon is transcribed, more
lactose is transported

Lag into the cell, and 3-galacto-
time sidase is synthesized to
break down lactose.
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(@) Lactose present, glucose scarce (cAMP level high). If glucose is scarce,
the high level of cAMP activates CAP, and the lac operon produces large
amounts of mRNA for lactose digestion.
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(b) Lactose present, glucose present (CAMP level low). When glucose is
present, cAMP is scarce, and CAP is unable to stimulate transcription.
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Mutations
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(a) Normal DNA molecule

TA@HT@AAA@@GATT
AucMacuuucGcaglduaa
®

(c) Nonsense mutation
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DNA (template strand)

TA@TT@AAAE@GATT

AUGAAGUUUEG@UAA
mRNA
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Amino acid sequence @— Lys — Phe—. m

(b) Missense mutation

&

TACTTICAACICGATT

AUGAAGUUGG@UAA'"

T

(d) Frameshift mutation
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Ultraviolet light Mutations

Tl

@ Exposure to ultraviolet light causes adjacent thymines to become cross-linked,
l forming a thymine dimer and disrupting their normal base pairing.

/Thymme dimer

4k
ISR (o

. J"ﬂh v \ © An endonuclease cuts the DNA, and an exonuclease removes the damaged DNA.
Q

n

© DNA polymerase fills the gap by synthesizing new DNA, using the intact strand as a template.

]

New DNA

f N

© DNA ligase seals the remaining gap by joining the old and new DNA.
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. N d Testing mutagens

/ Rat liver extract

Suspected
mutagen .
Experimental plate
>
Incubation
Cultures of
histidine-dependent . . . . .
P Media lacking histidine Colonies of revertant bacteria
Salmonella
/ Rat liver extract
Control f
(no suspected z;l
mutagen added) ‘
>
Incubation
Control plate
o Two cultures are The suspected Each sample is poured onto o The numbers of colonies on the experimental
prepared of Salmonella’ mutagen is added to a plate of medium lacking and control plates are compared. The control
bacteria that have the experimental histidine. The plates are then plate may show a few spontaneous
lost the ability to sample only; rat liver incubated at 37° C for two histidine-synthesizing revertants. The test
synthesize histidine extract (an activator) days. Only bacteria whose plates will show an increase in the number of
(histidine-dependent). is added to both histidine-dependent histidine-synthesizing revertants if the test
samples. phenotype has mutated back chemical is indeed a mutagen and potential carcinogen.
(reverted) to histidine- The higher the concentration of mutagen used, the more
synthesizing will grow revertant colonies will result.

into colonies.
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Cyclophosphamide:
a nitrogen mustard
alkylating agent

en.wikipedia.org



RECOMBINATION

A sign of recombination

OO

@ Living encapsulated
bacteria injected into
mouse.

o Colonies of encapsulated
bacteria were isolated
from dead mouse.

(a)
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€@ Living nonencapsulated
bacteria injected into
mouse.

o A few colonies of nonencap-
sulated bacteria were
isolated from mouse;

(b) phagocytes destroyed
nonencapsulated bacteria.

@) Heat-killed encapsulated
bacteria injected into
mouse.

No colonies were isolated
from mouse.

(c)

o Living nonencapsulated and
heat-killed encapsulated
bacteria injected into mouse.

e Colonies of encapsulated
bacteria were isolated from
dead mouse.

(d)
Fig. 8.25



Recombination:
Transformation

Recipient cell

a
b
c
d
DNA fragments Chromosomal DNA
from donor cells €@ Recipient cell takes

up donor DNA.

© Donor DNA aligns
with complementary
bases.

Recombination occurs
between donor DNA
and recipient DNA.

Degraded
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DNA \\¢

Genetically transformed cell
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Recombination:
Conjugation

(a) Sex pilus

TEM T (b) Mating bridge m
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RECOMBINATION

Phage protein coat e — Re CO m b i n at i O n :
Phage DNA _’ .
Transduction

Bacterial chromosome

© A phage infects the donor bacterial cell.

@ Phage DNA and proteins are made, and the bacterial chromosome is broken into pieces.

© Occasionally during phage assembly, pieces of bacterial DNA are packaged in a phage
capsid. Then the donor cell lyses and releases phage particles containing bacterial DNA.

Y
X
DNA /%«—n

O A phage carrying bacterial DNA infects a new host cell, the recipient cell.

Bacterial
DNA Recipient
cell
Donor bacterial ¢ Recipient bacterial
DNA DNA

© Recombination can occur, producing a recombinant cell with a genotype
different from both the donor and recipient cells.

Recombinant

cell reproduces
normally Q j

Many cell divisions
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Plasmids

Pilus and
conjugation
proteins

(b)

Origin of transfer tet
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Operon Operon mOdEI:
negative repressible
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transcription and trar ion proceed, leading to the synthesis
of tryptophan.
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Operon model

(a) Bacteria growing on
glucose as the sole carbon
source grow faster than on
lactose.
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(b) Bacteria growing in a
and lactose first consume
the glucose and then, after a
short lag time, the lactose.
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cellular cAMP increases, the
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Operon model: *
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(a) Lactose present, glucose scarce (cAMP level high). If glucose is scarce,
the high level of cAMP activates CAP, and the lac operon produces large

amounts of mRNA for lactose digestion.
Promoter

lacl / ) lacZ
DNA yx_

o B Operator
CAP-binding site

RNA polymerase
can't bind

Inactive lac

Inactive repressor
CAP

(b) Lactose present, glucose present (cAMP level low). When glucose is
present, cCAMP is scarce, and CAP is unable to stimulate transcription.
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Mutations

DNA (template strand)
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(a) Normal DNA molecule
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{c) Nonsense mutation
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(b) Missense mutation
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Ultraviolet light Mutations

© Exposure to ultraviolet light causes adjacent thymines to become cross-linked,
forming a thymine dimer and disrupting their normal base pairing.

Thymine dimer

v
L [OpR| ] [
A N
_Uijﬂhj_\_ © An endonuclease cuts the DNA, and an exonuclease removes the damaged DNA.
A A
,/l New DNA ) - ) )
_Z © DNA polymerase fills the gap by synthesizing new DNA, using the intact strand as a template.
A N

© DNA ligase seals the remaining gap by joining the old and new DNA.

© 2013 Pearson Education, Inc. F I g 8 2 1



Experimental
sample Q

Suspected
mutagen

% Rat liver extract
s
. \‘

Cultures of
histidine-dependent
Salmonella

% Rat liver extract

Control
(no suspected
mutagen added) ‘

o The suspected

is added to
the experimental
sample only; rat liver
extract (an activator)
is added to both
samples.

@ Two cultures are
prep of
bacteria that have
lost the ability to
synthesize histidine
(histidine-dependent).
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a plate of medium lacking and control plates are compared. The control
histidine. The plates are then plate may show a few spontaneous
incubated at 37° C for two histidine-synthesizing revertants. The test
days. Only bacteria whose plates will show an increase in the number of
histidine-dependent histidine-synthesizing revertants if the test
pr ype has ical is indeed a and i
(reverted) to histidine- The higher the concentration of mutagen used, the more
synthesizing will grow revertant colonies will result.
into colonies.

back
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RECOMBINATION

A sign of recombination

OO

@ Living encapsulated
bacteria injected into
mouse.

Colonies of encapsulated
bacteria were isolated
from dead mouse.

(a)
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@ Living nonencapsulated
bacteria injected into
mouse.

A few colonies of nonencap-
sulated bacteria were
isolated from mouse;
phagocytes destroyed
nonencapsulated bacteria.

(2]

(b)

bacteria injected into
mouse.

© Heat-killed encapsulated

@ Living nonencapsulated and

heat-killed encapsulated
bacteria injected into mouse.

Col of encapsulated

ONo lonies were isol.
from mouse.

(c)

(d)

bacteria were isolated from
dead mouse.

Fig. 8.25



Recombination:
Transformation

Recipient cell

a

b

c

d
DNA fragments Chromosomal DNA
from donor cells @ Recipient cell takes

up donor DNA.

© Donor DNA aligns
with complementary
bases.

o Recombination occurs
between donor DNA
and recipient DNA.

Degraded
unrecombined

Genetically transformed cell
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Recombination:
Conjugation
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RECOMBINATION

Recombination:
Phage DNA ( O )_’( C ) .
Transduction

Bacterial chromosome

@ A phage infects the donor bacterial cell.

© Phage DNA and proteins are made, and the bacterial chromosome is broken into pieces.

@ Occasionally during phage assembly, pieces of bacterial DNA are packaged in a phage
capsid. Then the donor cell lyses and releases phage particles containing bacterial DNA.

© A phage carrying bacterial DNA infects a new host cell, the recipient cell.

Bacterial
DNA Recipient
cell
Donor b ial ¢ Recipi b ial
DNA DNA

© Recombination can occur, producing a recombinant cell with a genotype
different from both the donor and recipient cells.

A

cell reproduces
normally Q j
Many cell divisions
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Plasmids

Pilus and
conjugation
proteins

(b)

Origin of transfer tet
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