Section 8.1 Arc Length

Given a function $f(x)$ is continuous over interval $[a, b]$. How to find arc - length of $f(x)$ over $[a, b]$

Def: If f^{\prime} is continuous on [a, b], then the length of the curve $y=f(x)$ for $a \leq x \leq b$, is $L=\int_{a}^{b} \sqrt{1+f^{\prime}(x)} d x$ Or $\quad L=\int_{\mathrm{a}}^{\mathrm{b}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ If the function is in term of x Or $L=\int_{\mathrm{a}}^{\mathrm{b}} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$ If the function is in term of y . General form:

Ex: Find the arc - length of the following:
a) $y=x^{2 / 3}$ from $(1,1)$ to $(8,4)$
b) $y=\frac{x^{2}}{4}-\frac{\ln x}{2}$ from $\mathrm{x}=1$ to $\mathrm{x}=2$.
c) $y=\ln \left(\frac{e^{x}+1}{e^{x}-1}\right)$ from $x=1$ to $x=2$
d) $y=\frac{x^{3}}{3}+x^{2}+x+\frac{1}{4 x+4}$ for $0 \leq x \leq 2$
e) $\quad x=\frac{y^{3 / 2}}{3}-y^{1 / 2}$ from $\mathrm{y}=2$ to $\mathrm{y}=9$.
f) $\quad x=\int_{0}^{y} \sqrt{\sec ^{4} t-1} d t$ for $-\frac{\pi}{4} \leq y \leq \frac{\pi}{4}$

Section 8.2 Area of a Surface of Revolution

Ex: Find the area of the surface formed by rotating about the x axis the arc $y=\frac{x^{3}}{3}$ from $\mathrm{x}=0$ to $\mathrm{x}=2$.

Ex: Find the surface area of the arc of the curve $x=\frac{y^{3}}{6}+\frac{1}{2 y}$ from $(2 / 3,1)$ to $(14 / 3,3)$,
a) Rotates about the y - axis.
b) Rotates about the x - axis.

Ex: The curve $y=\sqrt{2 x-x^{2}}$ for $0.5 \leq x \leq 1.5$ is rotated about the $\mathrm{x}-$ axis. Find its surface area.

Ex: Show that the surface area of a sphere of radius r is $4 \pi r^{2}$

Ex: The region bounded by $y=\frac{1}{x} ; y=0$ and $x \geq 1$ is rotated about the $\mathrm{x}-$ axis.
a) Find its volume.
b) Find it surface area.

