Section 10.2 Polar Coordinates

Def: A point P is represented by the order pair (r, θ) where r is the distance from the point to the origin, and theta is the angle from the x -axis to the line connecting the point and the origin.

So for any point $(x, y) \Rightarrow(r, \theta) \Rightarrow\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$
Identities: $\quad x^{2}+y^{2}=r^{2} ; \tan \theta=\frac{y}{x}$

Ex: Represent the following point in Cartesian coordinate to the polar coordinates.
a) $(1, \sqrt{3})$
b) $(1,-1)$

Ex: Locate the following points in polar coordinates.
a) $(5, \pi / 4)$
b) $(-2,7 \pi / 6)$

Ex: Convert the following into rectangular coordinates:
a) $r^{2}=3 r \sin \theta-4 \cos \theta$
b) $\quad r^{3}=2 r \cos \theta-5 r \sin \theta$

Ex: Convert to polar coordinate:
a) $x^{2}+y^{2}=25$
b) $\quad 7 x-5 y^{2}=4$

Polar Curves:

The graph of a polar equation $r=f(\theta)$ or more generally, $F(r, \theta)=0$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Ex: Sketch the graph of the following:
a) $r=\theta$
b) $\quad r=1 / \theta$
c) $\quad r=3$
d) $\quad \theta=\pi / 3$
e) $r=2 \cos \theta$
f) $r=5 \sin (\theta)$

1) $r=-5 \cos (2 \theta)$
m) $\quad r=2 \cos (3 \theta)$
n) $r=3-2 \cos \theta$
o) $\quad r^{2}=-9 \cos (2 \theta)$
p) $\quad r^{2}=-4 \sin (3 \theta)$

How to sketch $r=a \pm b \cos \theta$ and $r=a \pm b \sin \theta$

Tangents to Polar Curves

To find a tangent line to a polar curve $r=f(\theta)$, we regard θ as a parameter and write its parametric equations as

$$
\begin{aligned}
& x=r \cos \theta=f(\theta) \cos \theta \text { and } y=r \sin \theta=f(\theta) \sin \theta \\
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
\end{aligned}
$$

Ex: a) For the cardioid $r=1+\sin \theta$, find the slope of the tangent line where $\theta=\pi / 3$
b) Find the points on the cardioid $r=4-4 \cos \theta$ where the tangent line is horizontal or vertical.

