Ex: Find the area enclosed by one loop of the four-leave rose $r=\cos (2 \theta)$.

Ex: Find the area of the inner loop of $r=4-8 \cos \theta$
$\underline{\boldsymbol{E x}}$: Given $r_{1}=4 \sin (\theta)$ and $r_{2}=2$. Set up integral(s) for area
a) Inside $\mathrm{r} 1 /$ outside r 2
b) Inside r 2 / outside r 1
c) Inside both r 1 and r 2 .

Ex: Given $r_{1}=-5 \sin \theta$ and $r_{2}=5+5 \sin \theta$. Sketch and set up integral(s) for area
a) Inside rl / outside r 2 .
b) Inside r2 / outside r1
c) Inside both r 1 and r 2 .
$\underline{\boldsymbol{E x}}$: Find the area of the region that lies inside the $\operatorname{circle} r=3 \sin \theta$, and the cardioid $r=1+\sin \theta$.
$\underline{E x}: \quad$ Sketch and find the area of the region that lies inside the circle $r=1$ and outside the cardiod $r=1-\cos \theta$

Ex: Find the arc - length of the spiral $r=e^{\theta}$ for $0 \leq \theta \leq \pi$

Ex: Find the arc - length of the cardioid $r=1-\cos \theta$ for $0 \leq \theta \leq 2 \pi$

Area of a surface of revolution: Given $r=f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$, and if the point $P:(r, \theta)$ traces trace the curve $r=f(\theta)$ exactly once for $\alpha \leq \theta \leq \beta$, then area of the surfaces generated revolving the curve about the $\mathrm{x}-$ and $\mathrm{y}-$ axes are given

1. Rotated about the x - axis. $S=\int_{\alpha}^{\beta} 2 \pi r \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$ for $y \geq 0$
2. Rotated about the y - axis $S=\int_{\alpha}^{\beta} 2 \pi r \cos \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$ for $x \geq 0$
$\underline{E x}$: Find the area of the surface generated by revolving the right - hand loop of the lemniscate $r^{2}=\cos (2 \theta)$ about the $\mathrm{y}-$ axis.
