Chapter 11 Infinite Sequences and Series

Section 11.1

Sequences

Def: A sequence can be thought as a list of numbers written in a definite order; $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$

Def: An infinite sequence (or sequence) of numbers is a function whose domain is the set of integers greater than or equal to some integer n .

Notation: $\quad f(n)=\{f(1), f(2), \ldots ., f(n), \ldots\}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\}=\left\{a_{n}\right\}_{n=1}^{\infty}$

Ex: List the first 4 terms of the following sequences:
a) $\quad\left\{a_{n}\right\}=\left\{\frac{2 n+1}{n^{2}+3}\right\}$
b) $\quad\left\{b_{n}\right\}=\left\{\frac{(-1)^{n}}{(n+1)!}\right\}$
c) $\quad\left\{c_{n}\right\}=\{\cos (n \pi)\}$
d) $\quad d_{1}=2 ; d_{2}=-1 ; d_{n+2}=2 d_{n+1}+d_{n}-n$!

General formula of a sequence:
Ex: Put the following sequence into its general formula
a) $\sqrt{2}, \sqrt{3}, \sqrt{4}, \ldots, \sqrt{n}, \ldots=$
b) $\frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n} \ldots=$
c) $\quad \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n-1}{n}, \ldots=$
d) $\quad-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots,(-1)^{n+1} \frac{1}{n}, \ldots=$
e) $\left\{-\frac{2}{3}, \frac{3}{9},-\frac{4}{27}, \frac{5}{81}, \ldots, \frac{(-1)^{n}(n+1)}{3^{n}}\right\}=$
f) $\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \frac{7}{3125}, \ldots\right\}=$

Ex: Recursive Formula: (Fibonacci Sequence)

$$
\left\{a_{n}\right\}=\{1,1,2,3,5,8,13,21, \ldots\}
$$

Limit of a sequence: where does a sequence go to? i.e. what is the number (only one) that a sequence will be eventually approaches to.

Def: A sequence $\left\{a_{n}\right\}$ has the limit L and we write $\lim _{n \rightarrow \infty} a_{n}=L$. If we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent)

A more precise version of limit:

A sequence $\left\{a_{n}\right\}$ has the limit L and we write $\lim _{n \rightarrow \infty} a_{n}=L$ if for every $\varepsilon>0$ there is a corresponding integer N such that $\left|a_{n}-L\right|<\varepsilon$ whenever $\mathrm{n}>\mathrm{N}$.

Def: Diverges to Infinity:
The sequence $\left\{a_{n}\right\}$ diverges to infinity if for every number M there is an integer N such that for all n larger than $\mathrm{N}, a_{n}>n$. If this condition holds we write $\lim _{n \rightarrow \infty} a_{n}=\infty$

Theorem 1: $\quad \lim _{n \rightarrow \infty} a_{n}=A ; \lim _{n \rightarrow \infty} b_{n}=B$
a) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=A \pm B$;
b) $\quad \lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=A B$;
c) $\quad \lim _{n \rightarrow \infty}\left(k a_{n}\right)=k A ;$
d) $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{A}{B} ; B \neq 0$

Squeeze Theorem: $\quad a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$

Theorem 3: Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $a_{n} \rightarrow L$ and if f is a function that is continuous at L and defined at all a_{n}, then $f\left(a_{n}\right) \rightarrow f(L)$

Theorem 4: Suppose that $f(x)$ is a function defined for all $x \geq x_{0}$ and that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $f(n)=a_{n}$ for all $n \geq n_{0}$. Then

$$
\lim _{x \rightarrow \infty} f(x)=L \Rightarrow \lim _{n \rightarrow \infty} a_{n}=L
$$

Theorem 3: If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$, when n is an integer, then $\lim _{n \rightarrow \infty} a_{n}=L$

Ex: Evaluate the limit of the following sequences:
a) $\quad\left\{a_{n}\right\}=\left\{\frac{2 n^{3}-2 n+7}{\sqrt{9 n^{6}-5 n+3}}\right\}$
b) $\quad\left\{b_{n}\right\}=\left\{\left(1+\frac{3}{n}\right)^{2 n}\right\}$
c) $\quad\left\{c_{n}\right\}=\left\{\frac{\sin ^{2}(2 n+1)}{\sqrt{n^{3}+2}}\right\}$
d) $\quad\left\{d_{n}\right\}=\left\{1+(-1)^{n}\right\}$.
e) $\quad\left\{e_{n}\right\}=\{\sin (n)\}$
f) $\quad\left\{a_{n}\right\}=\left\{\frac{9^{n}+7^{n}}{9^{n}+5^{n}}\right\}$
g) $\quad\left\{a_{n}\right\}=\{\ln (n+2)-\ln (3 n+2)\}$
h) $\quad\left\{a_{n}\right\}=\left\{\frac{n!}{n^{n}}\right\}$
g) $\quad\left\{a_{n}\right\}=\{\sqrt[n]{n}\}$

Note: \quad For what values of r is the sequence $\left\{r^{n}\right\}$ convergence?

Sol: $\quad \lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{l}\infty \text { if } r>1 \\ 1 \text { if } \mathrm{r}=1 \\ 0 \text { if } 0<\mathrm{r}<1\end{array}\right.$ Demonstrate this by plotting point for n .
Theorem: \quad The sequence $\left\{r^{n}\right\}$ is convergent if $-1<r \leq 1$ and divergent for all other values of r.

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}1 & \text { if } \mathrm{r}=1 \\ 0 & \text { if }-1<\mathrm{r}<1\end{cases}
$$

Monotone and Bounded Sequences:

Def: Let $\left\{a_{n}\right\}$ be a sequence of real numbers.

- \quad The sequence is monotone increasing if $a_{n} \leq a_{n+1}$ for all $n \geq 1$
- The sequence is monotone decreasing if $a_{n} \geq a_{n+1}$ for all $n \geq 1$
- \quad The sequence is bounded above if there is a number M such that $a_{n} \leq M$ for all $n \geq 1$
- \quad The sequence is bounded below if there is a number m such that $a_{n} \geq M$ for all $n \geq 1$
(If a sequence is bounded above and bounded below, we say that the sequence is bounded. If a sequence is not bounded, we say that it is unbounded.)
$\underline{\boldsymbol{E x}:}$ a) For positive integer n, let $a_{n}=\sqrt{n^{4}+n^{3}}-n^{2}$. Show that the sequence $\left\{a_{n}\right\}$ is monotone increasing and unbounded.
b) Let $\left\{a_{n}\right\}=\left\{\frac{(-1)^{n}}{n}\right\}$. Show that the sequence $\left\{a_{n}\right\}$ is bounded but not monotone.
c) Show that the sequence $a_{n}=\frac{3}{n+5}$ is monotone decreasing.
d) Show that the sequence $a_{n}=\frac{n}{n^{2}+1}$ is monotone decreasing.
c) $\quad\left\{a_{n}\right\}=\left\{\frac{3}{n+5}\right\} \rightarrow$ it's monotone decreasing.
d) $\quad\left\{a_{n}\right\}=\left\{\frac{n}{n^{2}+1}\right\}$

The Monotone Sequence Theorem: Let $\left\{a_{n}\right\}$ be a monotone increasing sequence of real numbers.
a) if $\left\{a_{n}\right\}$ is bounded above, then $\lim _{n \rightarrow \infty} a_{n}$ exists.
b) if $\left\{a_{n}\right\}$ is not bounded above, then $\lim _{n \rightarrow \infty} a_{n}=\infty$
$\underline{\boldsymbol{E x}}$: Define a sequence $\left\{a_{n}\right\}$ by the recursion relationship $a_{1}=1 ; a_{n+1}=\sqrt{2 a_{n}}$ for $n \geq 1$. Show that the sequence converges and find its limit.
$\underline{\boldsymbol{E x}}: \quad$ Investigate the sequence $\left\{a_{n}\right\}$ defined by the recursive definition $a_{1}=2 ; a_{n+1}=\frac{1}{2}\left(a_{n}+6\right) \quad$ for $\mathrm{n}=1,2,3, \ldots$

1. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
2. $\quad \lim _{n \rightarrow \infty} x^{1 / n}=1(x>0)$
3. $\quad \lim _{n \rightarrow \infty} x^{n}=0(|x|<1) \quad$ 5. $\quad \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad$ (any x$)$
4. $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0(\operatorname{any} x)$

Ex: Evaluate the following limits:
a) $\quad \lim _{n \rightarrow \infty} \frac{\ln \left(n^{3}\right)}{4 n}$
b) $\quad \lim _{n \rightarrow \infty} \sqrt[n]{n^{2}}$
c) $\quad \lim _{n \rightarrow \infty}\left(\frac{3^{n}}{n^{3}}\right)$
d) $\quad \lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt[n]{n}}=$
e) $\quad \lim _{n \rightarrow \infty}(n+4)^{1 /(n+4)}$
f) $\quad \lim _{n \rightarrow \infty} \frac{(10 / 11)^{n}}{(9 / 10)^{n}+(11 / 12)^{n}}$
g) $\quad \lim _{n \rightarrow \infty} \frac{3^{n} 6^{n}}{2^{-n} n!}$;
h) $\quad \lim _{n \rightarrow \infty}\left(\frac{3 n+1}{3 n-1}\right)^{n}$

