Alternating Series

Def: An alternating series is a series of the form $a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+\ldots$
Such as $1+2-3+4-5+6 \ldots$
The Alternating Series Test: Let $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\ldots \quad\left(a_{n}>0\right)$
Satisfies the following conditions:
i) $\quad a_{n+1} \leq a_{n} \Rightarrow$ Decreasing without negative sign.
ii) $\quad \lim _{n \rightarrow \infty} a_{n}=0$

Then the series is convergent.
Ex: Determine whether the following series is convergent or divergent.
a) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$
b) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} 3 n}{4 n-1}$ this is an alternating series, but $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{4 n-1}=\frac{3}{4} \neq 0$
c) $\quad \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2^{n}}$
d) $\quad \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1}$; Let $a_{n}=\frac{n^{2}}{n^{3}+1}$; How do we know $a_{n}=\frac{n^{2}}{n^{3}+1}$ is decreasing, consider the following function $f(x)=\frac{x^{2}}{x^{3}+1} \Rightarrow f^{\prime}(x)=\frac{x\left(2-x^{3}\right)}{\left(x^{3}+1\right)^{2}} \Rightarrow f^{\prime}(x)<0$ for $x>\sqrt[3]{2}$ i.e. $a_{n}=\frac{n^{2}}{n^{3}+1}$ is decreasing.
$\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}+1}=0$. By the Alternating Series Test, $a_{n}=\frac{n^{2}}{n^{3}+1}$ is convergent.
e) $\quad \sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{3 n+2}}$
f) $\quad \sum_{n=0}^{\infty}(-1)^{n} \frac{n}{n^{4}+5}$

Estimating Sums:

Alternating Series Estimation Theorem: If $\quad S=\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ is the sum of an alternating
series that satisfies
i) $\quad 0 \leq a_{n+1} \leq a_{n}$ and ii) $\lim _{n \rightarrow \infty} a_{n}=0$ Then $\left|R_{n}\right|=\left|S-S_{n}\right| \leq\left|a_{n+1}\right|$
$\underline{\boldsymbol{E x}}$: Approximate the sum of the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ with an error of less than 0.01 .

Ex: How many terms are needed in computing the sum of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}+2 n+4}$ to ensure its accuracy to 0.001

