
   Alternating Series 
Def: An alternating series is a series of the form ...54321 +−+−+ aaaaa  
 Such as ...654321 +−+−+  
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∞

=

− −+−+−=−
1

54321
1 ...1

n
n

n aaaaaa  )0( >na  

Satisfies the following conditions: 
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Then the series is convergent. 
 
Ex: Determine whether the following series is convergent or divergent. 
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Estimating Sums: 

Alternating Series Estimation Theorem: If ( )∑
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