Section 11.6 Absolute convergence and The Ratio and Root Tests

Def: A series Zan is called absolutely convergent if the series of absolute values Z|an | is
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convergent.

Ex:  The series:
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Def: A series Zan is called conditionally convergent if it is convergent but not absolutely
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convergent.
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Theorem: If the series Z a, converges absolutely, then it converges.
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Ex:  Test for convergence / divergence:
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Theorem: If the series Zan diverges then Z a,|diverges.
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The Ratio Test: Given a series Z a,
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1) Iflim—* = L <1, then the series Z a, 1s absolutely convergent (and therefore
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ii) Iflim|— = L > 1, lim|—1{ = 0, then the series Z a, is divergent.
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Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or

0
divergence of Zan
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Ex:  Test for the convergence:
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The Root Test: Given a series z a,
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1) If limz/ an| = L <1, then the series Zan is absolutely convergent (hence it’s
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convergence)

11 If limz =L>1,or limz = o0, then the series is divergent.
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11 If limz =1, the Root Test is inconclusive.
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Ex:  Test the convergence /divergence of the following series:
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