Section 11.10 Taylor and Maclaurin Series We have the power series as $\sum_{n=0}^{\infty} c_n (x-a)^n$. If we define a function $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$

<u>Def</u>: Let f(x) has a power representation (expansion) at x = a. Where

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n \text{ where } c_n = \frac{f^{(n)}(a)}{n!} \text{ is called a Taylor expansion of } f(x) \text{ at } x = a$$

$$\Rightarrow f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

<u>Note</u>: The Taylor polynomials of degree n at center x = a $T_n(x,c) = \sum_{i=0}^n c_i (x-a)^i$

<u>Def:</u> Taylor expansion of f(x) at x = 0 is called Maclaurin Series $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x-0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ <u>*Ex*</u>: Find the Taylor series of the following function at the center x = a.

a)
$$f(x) = \frac{1}{x} \text{ at } a = 2$$
.

b)
$$f(x) = \sin(x) \ at \ a = \frac{\pi}{3}$$

Ex: Find Maclaurin series of the following functions: a) $f(x) = e^x$

b) $f(x) = \cos(x)$

c)
$$f(x) = \sin(x)$$

Normally, we only interest at Taylor series up to certain degree n. So we $f(x) = T_n(x) + R_n(x)$, where $R_n(x)$ is the remainder (error) $R_n(x) = |f(x) - T_n(x)|$

<u>**Taylor's Theorem**</u>: If f is differentiable through order n + 1 in an open interval I containing a, then for each x in I, there exists a number c between x and a such that

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

Where $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

<u>**Taylor's Inequality:</u>** If $|f^{(n+1)}(x)| \le M$ for $|x-a| \le d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality $|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$ for $|x-a| \le d$ </u>

<u>Note:</u> $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ for any real number x.

<u>*Ex*</u>: Find the Maclaurin series of the function $f(x) = \sin x$. Show that this series converges to $\sin x$ for all real x.

<u>Ex</u>: Find the Maclaurin series of the following functions: a) $f(x) = x^3 \cos(7x^2)$

b)
$$f(x) = \frac{x^4}{e^{5x^3}}$$

c)
$$f(x) = \frac{\sin(3x^3)}{3x^2}$$

d)
$$f(x) = x^5 \tan^{-1}(2x^3)$$

Ex: Using Maclaurin series to evaluate the following:

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{\pi^{2n+1}}{2^{2n+1}}$$

b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \frac{\pi^{2n+1}}{9^n}$$

c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{2^n}{3^{n-1}}$$

d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (3)^{n/2}}{(2n+1)}$$

Ex: a) Evaluate $\int e^{-x^2} dx$ as an infinite series.

b) Evaluate $\int_0^1 e^{-x^2} dx$ correct to within an error of 0.001.

Ex: Use power series to evaluate the following integrals: x^2

a)
$$\int \frac{x^2}{3+5x^{15}} dx$$

b)
$$\int x^2 \sin(x^{17}) dx$$

c)
$$\int x^e e^{\sqrt{x}} dx$$

Multiplication and Division of Power Series:Ex:Find the first three nonzero terms in the

Find the first three nonzero terms in the Maclaurin series for

 $f(x) = e^x \sin x$ a)

b) $f(x) = \tan x$

Note: A famous Euler's formula (Euler identity)

Prove the Euler's formula: $e^{i\theta} = \cos \theta + i \sin \theta$