
   Section 11.10  Taylor and Maclaurin Series 
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Def:   Let ( )xf has a power representation (expansion) at x a= .  Where 
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Def: Taylor expansion of f(x) at 0x = is called Maclaurin Series 
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Ex: Find the Taylor series of the following function at the center x = a. 
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x
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Ex: Find Maclaurin series of the following functions: 
 a) ( ) xf x e=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b) ( ) ( )cosf x x=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



c) ( ) ( )sinf x x=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
Normally, we only interest at Taylor series up to certain degree n.  So we ( ) ( ) ( )xRxTxf nn += , 
where ( )xRn is the remainder (error) ( ) ( ) ( )xTxfxR nn −=  
Taylor’s Theorem: If f is differentiable through order n + 1 in an open interval I containing a, 
then for each x in I, there exists a number c between x and a such that  
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Taylor’s Inequality: If ( ) ( ) Mxf n ≤+1 for dax ≤− , then the remainder ( )xRn of the Taylor 
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Ex: Find the Maclaurin series of the function ( ) .sin xxf =   Show that this series converges to 
xsin  for all real x. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex: Find the Maclaurin series of the following functions: 
 a)  ( ) ( )3 2cos 7f x x x=  
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d) ( ) ( )5 1 3tan 2f x x x−=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex: Using Maclaurin series to evaluate the following: 
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Ex: a) Evaluate dxe x∫ − 2

as an infinite series. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 b) Evaluate ∫ −1 
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dxe x correct to within an error of 0.001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ex: Use power series to evaluate the following integrals: 
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 b) ( )2 17sinx x dx∫  

 
 
 
 
 
 
 
 
 
 
 
 
 c) e xx e dx∫  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Multiplication and Division of Power Series: 
Ex: Find the first three nonzero terms in the Maclaurin series for  
 
a) ( ) sinxf x e x=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) ( ) tanf x x=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Note:  A famous Euler’s formula (Euler identity)   
 
 Prove the Euler’s formula:    cos sinie iθ θ θ= +  
 


