Section 11.10

Taylor and Maclaurin Series

We have the power series as $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$. If we define a function $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$

Def: Let $f(x)$ has a power representation (expansion) at $x=a$. Where

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \text { where } c_{n}=\frac{f^{(n)}(a)}{n!} \text { is called a Taylor expansion of } \mathrm{f}(\mathrm{x}) \text { at } x=a \\
& \rightarrow f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

Note: The Taylor polynomials of degree n at center $x=a T_{n}(x, c)=\sum_{i=0}^{n} c_{i}(x-a)^{i}$
Def: Taylor expansion of $\mathrm{f}(\mathrm{x})$ at $x=0$ is called Maclaurin Series

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-0)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

$\underline{\boldsymbol{E x}}$: Find the Taylor series of the following function at the center $\mathrm{x}=\mathrm{a}$.
a) $\quad f(x)=\frac{1}{x}$ at $a=2$.
b) $\quad f(x)=\sin (x)$ at $a=\frac{\pi}{3}$

Ex: Find Maclaurin series of the following functions:
a) $\quad f(x)=e^{x}$
b) $\quad f(x)=\cos (x)$
c) $\quad f(x)=\sin (x)$

Normally, we only interest at Taylor series up to certain degree n . So we $f(x)=T_{n}(x)+R_{n}(x)$, where $R_{n}(x)$ is the remainder (error) $R_{n}(x)=\left|f(x)-T_{n}(x)\right|$
Taylor's Theorem: If f is differentiable through order $\mathrm{n}+1$ in an open interval I containing a, then for each x in I, there exists a number c between x and a such that

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)
$$

Where $R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$

Taylor's Inequality: If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality $\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$ for $|x-a| \leq d$

Note: $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$ for any real number x.
$\underline{E x}$: Find the Maclaurin series of the function $f(x)=\sin x$. Show that this series converges to $\sin x$ for all real x .
$\underline{\boldsymbol{E x}}$: Find the Maclaurin series of the following functions:
a) $\quad f(x)=x^{3} \cos \left(7 x^{2}\right)$
b) $\quad f(x)=\frac{x^{4}}{e^{5 x^{3}}}$
c) $f(x)=\frac{\sin \left(3 x^{3}\right)}{3 x^{2}}$
d) $\quad f(x)=x^{5} \tan ^{-1}\left(2 x^{3}\right)$

Ex: Using Maclaurin series to evaluate the following:
a) $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \frac{\pi^{2 n+1}}{2^{2 n+1}}$
b) $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \frac{\pi^{2 n+1}}{9^{n}}$
c) $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{2^{n}}{3^{n-1}}$
d) $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n}(3)^{n / 2}}{(2 n+1)}$

Ex: a) Evaluate $\int e^{-x^{2}} d x$ as an infinite series.
b) Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ correct to within an error of 0.001 .

Ex: Use power series to evaluate the following integrals:
a) $\int \frac{x^{2}}{3+5 x^{15}} d x$
b) $\quad \int x^{2} \sin \left(x^{17}\right) d x$
c) $\quad \int x^{e} e^{\sqrt{x}} d x$

Multiplication and Division of Power Series:

Ex: Find the first three nonzero terms in the Maclaurin series for
a) $\quad f(x)=e^{x} \sin x$
b) $\quad f(x)=\tan x$

Note: A famous Euler's formula (Euler identity)
Prove the Euler's formula: $\quad e^{i \theta}=\cos \theta+i \sin \theta$

