Library of functions:

- Polynomials
- Rational functions
- Exponential functions
- Radical functions
- Logarithmic functions
- Trigonometric functions
- Inverse trig. Functions

Domain and range for all functions \rightarrow Piecewise - defined functions.

Transformations of functions:

- Composition of functions
- Inverse functions and logarithms:

Solve equations:
a) Linear / quadratic/ exponential/logarithmic / and trig equations:

Construction of functions:
Ex: Let P be a point on $f(x)=x^{3}+2$ and a point $\mathrm{A}(1,1)$.
a) Express the area of a circle center and at A and radius from A to P , as a function of x .
b) Find the domain of the area function. $A(3)$ and $A(-2)$

Chapter 2

Section 2.1: The tangent and velocity problems

Average velocity $=\frac{\text { distance traveled }}{\text { time elapsed }}$
For a distance function $d=f(t) \Rightarrow$ Velocity: $v_{\text {avg }}=\frac{f(b)-f(a)}{b-a}=\frac{\Delta y}{\Delta x}$

Instantaneous velocity is what exactly the speed at a particular time. (Snap shot)
Ex:From the top of a 250 ft high building, you throw a ball into the air with an initial velocity of $25 \mathrm{ft} / \mathrm{sec}$. The height in feet after t seconds of the ball is given by

$$
h(t)=-16 t^{2}+25 t+250
$$

a) Find the average velocity for the time period beginning when $t=1$ and lasting (i) 0.5 second
(ii) 0.1 second
(iii) 0.05 s
(iv) 0.001 s
b) Find the instantaneous velocity when $t=1$.

Given a function $f(x)$ and two different points on the function \rightarrow define the slope of a secant line, and slope of a tangent line. Demonstrate the above concept by graphing

Ex: Given a function $f(x)=x^{3}-2$. Find the equation of a secant line passing through $\mathrm{x}=-1$ and $\mathrm{x}=2$.

