Why?

Rules for implicit differentiation:

Variable: $\frac{d}{dx}(x^n) = nx^{n-1}$ Function of x: y = f(x): $\frac{d}{dx}(y^n) = ny^{n-1}\frac{dy}{dx} = ny^{n-1}y'$ Ex: Determine: $\frac{dy}{dx}$ of the following: a) $x^2 + y^2 = 25$

b)
$$\sin^3(x^2 + y^3) - e^{3x+y} = 4$$

Product rules / Quotient rules for implicit differentiation:

For y as a function of x:
$$y = f(x) \Rightarrow \begin{cases} \frac{d}{dx} (x^n y^m) = \\ \frac{d}{dx} \left(\frac{x^n}{y^m} \right) \end{cases}$$

Ex: Determine $\frac{dy}{dx}$ of the following: a) $\tan(x^3y^2) + e^{x+2y} = 3$

b)
$$\sqrt{\frac{x^2+1}{y^2+3}} + x^3 - 5y = y^3$$

Ex: Find an equation of the tangent line to the circle $x^2 + y^2 = 25$ at x = 2

Ex: a) Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 6xy$

b) Find the tangent to the folium of Descartes $x^3 + y^3 = 6xy$ at the point (3,3)

c) At what points on the curve is the tangent line horizontal?

Ex: Find equations of all the tangent lines to the ellipse $3x^2 + 4y^2 = 36$ where the slope of the tangent line m = -1

Ex: Find the coordinates of the points on the graph of $(x - 2y - 1)^2 + (x + y)^2 = 16$ where the tangent line is horizontal.

Ex: Find slope of tangent lines to the curve $y^4 = y^2 - x^2$ at $\left(\frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{\sqrt{3}}{4}, \frac{1}{2}\right)$