Section 3.5

 Implicit DifferentiationWhy?

Rules for implicit differentiation:
Variable: $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
Function of $\mathrm{x}: ~ y=f(x): \frac{d}{d x}\left(y^{n}\right)=n y^{n-1} \frac{d y}{d x}=n y^{n-1} y^{\prime}$
Ex: Determine: $\frac{d y}{d x}$ of the following:
a) $x^{2}+y^{2}=25$
b) $\sin ^{3}\left(x^{2}+y^{3}\right)-e^{3 x+y}=4$

For y as a function of $\mathrm{x}: y=f(x) \Rightarrow\left\{\begin{array}{l}\frac{d}{d x}\left(x^{n} y^{m}\right)= \\ \frac{d}{d x}\left(\frac{x^{n}}{y^{m}}\right)=\end{array}\right.$
Ex: Determine $\frac{d y}{d x}$ of the following:
a) $\tan \left(x^{3} y^{2}\right)+e^{x+2 y}=3$
b) $\sqrt{\frac{x^{2}+1}{y^{2}+3}}+x^{3}-5 y=y^{3}$

Ex: Find an equation of the tangent line to the circle $x^{2}+y^{2}=25$ at $x=2$

Ex: a) Find $\frac{d y}{d x}$ for $x^{3}+y^{3}=6 x y$
b) Find the tangent to the folium of Descartes $x^{3}+y^{3}=6 x y$ at the point $(3,3)$
c) At what points on the curve is the tangent line horizontal?

Ex: Find equations of all the tangent lines to the ellipse $3 x^{2}+4 y^{2}=36$ where the slope of the tangent line $m=-1$

Ex: Find the coordinates of the points on the graph of $(x-2 y-1)^{2}+(x+y)^{2}=16$ where the tangent line is horizontal.

Ex: Find slope of tangent lines to the curve $y^{4}=y^{2}-x^{2}$ at $\left(\frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{\sqrt{3}}{4}, \frac{1}{2}\right)$

