Given a distance function: $s(t)$

Velocity function $v(t)$

Acceleration function: $a(t)$

Ex: \quad A particle moves according to the law of motion $s=f(t)$
a) Find the velocity and acceleration at time t.
b) When the is the particle at rest?
c) When is the particle moving in the positive/negative direction?
d) Sketch the motion of the particle and then find the total distance it travel during the first 7 sec . $s=f(t)=t^{3}-10 t^{2}+25 t+2$

Ex: An objection is thrown vertically upward with a velocity of $120 \mathrm{ft} / \mathrm{sec}$ from the a platform that is 80 ft high from the ground level, the distance function of the object: $s=f(t)=-16 t^{2}+100 t+80$
a) Find the velocity after 2 seconds and after 4 seconds
b) What is the maximum height?
c) When does it hit the ground?
d) With what velocity does it hit the ground?

Ex: Suppose that the cost (in dollars) for a company to produce x pairs of new line of jeans is $C(x)=2000+3 x+0.01 x^{2}+0.0002 x^{3}$
a) Find the marginal cost function.
b) Find $C^{\prime}(100)$ and explain its meaning. What does it predict?
c) Compare $C^{\prime}(100)$ with the cost of producing $101^{\text {st }}$ item.

Let $y(t)$ be the value of quantity y at time t and if the rate of change of y with respect to t is proportional to its size $y(t)$ at any time $\mathrm{t} . \frac{d y}{d t}=k y(t)$

Theorem: The only solutions of the differential equation $\frac{d y}{d t}=k y(t)$ are the exponential function

$$
y(t)=y(0) e^{k t}
$$

Population growth:
Ex: The population of a town grows at a rate proportional to the population present at time t. The initial population of 500 increases by 15% in 10 years. What will be the population in 30 years? How fast is the population growing at $\mathrm{t}=30$ years?

Newton's Law of Cooling:
Let $T=f(t)$ be a temperature function at time t of an objection. According to Newton's Law of Cooling, the rate of cooling is proportional to the temperature difference between the object and its surroundings,

$$
\frac{d T}{d t}=k\left(T-T_{s}\right): \text { where } T_{s}: \text { surrounding temperature. }
$$

So, let $y=T-T_{s} \Rightarrow \frac{d y}{d t}=\frac{d T}{d t} \Rightarrow \frac{d T}{d t}=k T$
By the previous theorem: $y(t)=y(0) e^{k t} \Rightarrow T-T_{s}=\left(y(0)-T_{s}\right) e^{k t} \Rightarrow T(t)=\left(y(0)-T_{s}\right) e^{k t}+T_{s}$
$\underline{\boldsymbol{E x}}$: A small metal bar, whose initial temperature was $20^{\circ} \mathrm{C}$ is dropped into a large container of boiling water. How long will it take the bar to reach $90^{\circ} \mathrm{C}$ if it is known tha tits temperature increase $2^{\circ} \mathrm{C}$ in 1 second? How long will it take the bar to reach $98^{\circ} \mathrm{C}$?

