Section 3.10 Linear Approximations and Differentials

Given a function $y=f(x)$. Determine equation of the tangent line at $\mathrm{x}=\mathrm{a}$.

Def: Linear approximation of $y=f(x)$ at $\mathrm{x}=\mathrm{a}$.

Ex: Using linear approximation to approximate the following:
a)
$\sqrt[5]{35}$
b) $\sin \left(50^{\circ}\right)$
c) $\sqrt[3]{1003}$

Ex: Suppose that after you stuff a turkey its temperature is $50^{\circ} \mathrm{F}$ and you then put it in $325^{\circ} \mathrm{F}$ oven. After an hour the meat thermometer indicates that the temperature of the turkey is $93^{\circ} \mathrm{F}$ and after two hours it indicates 129° F. Predict the temperature of the turkey after three hours.

Differentials

If $y=f(x)$, where f is a differentiable function, then the differential dx is an independent variable; that is, dx can be given the value of any real number.
$y=f(x) \Rightarrow y^{\prime}=\frac{d y}{d x}=f^{\prime}(x) \Leftrightarrow d y=f^{\prime}(x) d x \rightarrow$ dy is a dependent variable; it depends on the values of x and $d x$. If $d x$ is given a specific value and x is taken to be some specific number in the domain of f, then numerical value of dy is determined.

Ex: Compare the values of $\Delta \mathrm{y}$ and dy if $y=f(x)=x^{3}+x^{2}-2 x+1$ and x changes
a) From 2 to 2.05 and b) from 2 to 2.01

Sol: $\quad f(2)=9 ; f(2.05)=9.717625 \Rightarrow \Delta y=f(2.05)-f(2)=0.717625$

$$
d y=f^{\prime}(x) d x=\left(3 x^{2}+2 x-2\right) d x ; x=2 ; d x=\Delta x=0.05 \Rightarrow d y=\left(3(2)^{2}+2(2)-2\right)(0.05)=0.7
$$

Let $y=f(x)$ be differentiable at $\mathrm{x}=\mathrm{a}$ and suppose that $d x=\Delta x$ is an increment of x . We have two ways to describe the change in f as x changes from a to $a+\Delta x$:

$$
\Delta f=\Delta y=f(a+\Delta x)-f(a)
$$

The differential estimate: $d y=f^{\prime}(a) d x=f^{\prime}(a) \Delta x$

Ex: The radius of a sphere was measured and found to be 21 cm with a possible error in measurement of at most 0.05 cm . What is the maximum error in using this value of the radius to compute the volume of the sphere?
$V=\frac{4}{3} \pi r^{3} \Leftrightarrow d V=4 \pi r^{2} d r=4 \pi(21)^{2}(0.05) \approx 277 \mathrm{~cm}^{3}$

