Chapter Four	Application of Differentiation
Section 4.1	Maximum and Minimum Values

<u>**Def</u>**: Define "Absolute Maximum/Minimum" at x = c. Define "Relative (local) Maximum/Minimum" at x = c.</u>

<u>Ex</u>: Find the extrema values of the following: a) $f(x) = x^3 - 3x^2 - 25x + 75$

b) $f(x) = 5\sin(3x)$ over $[0, 2\pi]$

- <u>**Def**</u>: A <u>critical number</u> of a function f is a number c in the domain of f such that f'(c) = 0 or f'(c) = DNE
 - Ex: Find critical points of the following functions: 2 5

a)
$$f(x) = \frac{2}{3}x^3 + \frac{5}{2}x^2 - 3x + 4$$

b)
$$f(x) = 6x^{2/3} - x^{5/3}$$

c)
$$f(x) = \frac{x+1}{x^2 + x + 1}$$

Extreme Value Theorem: If f(x) is continuous over a closed interval [a,b], then f(x) attains an absolute maximum value f(c) and an absolute minimum f(d) at some $c, d \in [a,b]$

Steps to find extrema:

Step 1: Find critical points over interval [a,b]

Step 2: Find y – values of f(x) at critical points and also at the boundaries x = a and x = b.

Step 3: Absolute max = highest y – value, absolute min = lowest y – value.

<u>Fermat's Theorem</u>: If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0Note: it doesn't mean that in order to locate extreme values simply by testing f'(x) = 0.

Ex: Find the critical numbers of the following functions:

a) $f(x) = (2x^2 - 3)^{\frac{2}{3}}$

b)
$$f(x) = x^3 - 3x^2 + 1$$
 for $-\frac{1}{2} \le x \le 4$

Section 4.2 The Mean Value Theorem

<u>Rolle's Theorem</u>: Let f be a function that satisfies the following three hypotheses:

- 1. f is continuous on the closed interval [a,b].
- 2. f is differentiable on the open interval (a,b).
- 3. f(a) = f(b)Then there is a number c in (a,b) such that f'(c) = 0.
- Ex: Verify that the function satisfies the three hypotheses of the Rolle's Theorem. Then find all number c that satisfy the conclusion of the Rolle's theorem.
 - a) $f(x) = x^3 3x^2 + 2x + 5; [0, 2]$

Ex: Prove that the following equations has at most one solution: a) $x^3 + x - 1 = 0$ c) $7x = 2\sin(3x) + 5$ (has exactly one solution)

The Mean Value Theorem: Let f be a function that satisfies the following hypotheses:

- 1. f is continuous on the closed interval [a,b].
- 2. f is differentiable on the open interval (a,b).

Then there is a number c in (a,b) such that $f'(c) = \frac{f(b) - f(a)}{b - a} \Leftrightarrow f(b) - f(a) = f'(c)(b - a)$

Ex: Let $f(x) = x^3 - x$; a = 0, b = 2, since f is a polynomial, then f is continuous everywhere, so it is certainly continuous on [0,2] and differentiable on (0,2). Therefore, by MVT, there is a number c in (0,2) such that

Ex: Suppose that f(0) = -3 and $f'(x) \le 5$ for all values of x. How large can f(2) possibly be?

<u>Ex:</u> At 2:00pm a car's speedometer reads 30 mph. At 2:10pm it reads 50 mph. Show that at some time between 2:00pm and 2:10pm the acceleration is exactly 120 miles/ hr^2

<u>*Theorem*</u>: If f'(x)=0 for all x in the interval (a,b), then f is constant on (a,b).

Corollary: If f'(x) = g'(x) for all x in an interval (a,b) then f - g is constant on (a,b); i.e. f(x) = g(x) + const.