Def: Define "Absolute Maximum/Minimum" at $\mathrm{x}=\mathrm{c}$.
Define "Relative (local) Maximum/Minimum" at $\mathrm{x}=\mathrm{c}$.

Ex: Find the extrema values of the following:
a) $\quad f(x)=x^{3}-3 x^{2}-25 x+75$
b) $\quad f(x)=5 \sin (3 x)$ over $[0,2 \pi]$

Def: A critical number of a function f is a number c in the domain of f such that $f^{\prime}(c)=0$ or $f^{\prime}(c)=D N E$
Ex: Find critical points of the following functions:
a) $\quad f(x)=\frac{2}{3} x^{3}+\frac{5}{2} x^{2}-3 x+4$
b) $\quad f(x)=6 x^{2 / 3}-x^{5 / 3}$
c) $\quad f(x)=\frac{x+1}{x^{2}+x+1}$

Extreme Value Theorem: If $\mathrm{f}(\mathrm{x})$ is continuous over a closed interval $[\mathrm{a}, \mathrm{b}]$, then $\mathrm{f}(\mathrm{x})$ attains an absolute maximum value $\mathrm{f}(\mathrm{c})$ and an absolute minimum $\mathrm{f}(\mathrm{d})$ at some $c, d \in[a, b]$

Steps to find extrema:
Step 1: Find critical points over interval $[\mathrm{a}, \mathrm{b}]$
Step 2: Find y - values of $f(x)$ at critical points and also at the boundaries $x=a$ and $x=b$.
Step 3: Absolute max = highest y - value, absolute $\min =$ lowest y - value.
Fermat's Theorem: If f has a local maximum or minimum at c , and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$
Note: it doesn't mean that in order to locate extreme values simply by testing $f^{\prime}(x)=0$.

Ex: Find the critical numbers of the following functions:
a) $\quad f(x)=\left(2 x^{2}-3\right)^{\frac{2}{3}}$
b) $\quad f(x)=x^{3}-3 x^{2}+1$ for $-\frac{1}{2} \leq x \leq 4$
c) $\quad f(x)=x-2 \sin x$; for $0 \leq x \leq 2 \pi$

Section 4.2 The Mean Value Theorem

Rolle's Theorem: Let f be a function that satisfies the following three hypotheses:

1. f is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$.
2. $\quad \mathrm{f}$ is differentiable on the open interval (a, b).
3. $f(a)=f(b)$

Then there is a number c in (a, b) such that $\mathrm{f}^{\prime}(\mathrm{c})=0$.
Ex: Verify that the function satisfies the three hypotheses of the Rolle's Theorem. Then find all number c that satisfy the conclusion of the Rolle's theorem.
a) $\quad f(x)=x^{3}-3 x^{2}+2 x+5 ;[0,2]$
b) $\quad f(x)=\sin 2 \pi x ;[-1,1]$

Ex: Prove that the following equations has at most one solution:
a) $x^{3}+x-1=0$
b) $\quad x^{5}+5 e^{2 x}-3=0$
c) $\quad 7 x=2 \sin (3 x)+5$ (has exactly one solution)

The Mean Value Theorem: Let f be a function that satisfies the following hypotheses:

1. f is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$.
2. $\quad \mathrm{f}$ is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \Leftrightarrow f(b)-f(a)=f^{\prime}(c)(b-a)$
Ex: Let $f(x)=x^{3}-x ; a=0, b=2$, since f is a polynomial, then f is continuous every where, so it is certainly continuous on $[0,2]$ and differentiable on $(0,2)$. Therefore, by MVT, there is a number c in $(0,2)$ such that

Ex: \quad Suppose that $f(0)=-3$ and $f^{\prime}(x) \leq 5$ for all values of x . How large can $f(2)$ possibly be?

Ex: At 2:00pm a car's speedometer reads 30 mph . At 2:10pm it reads 50 mph . Show that at some time between $2: 00 \mathrm{pm}$ and $2: 10 \mathrm{pm}$ the acceleration is exactly $120 \mathrm{miles} / \mathrm{hr}^{2}$

Theorem: If $\mathrm{f}^{\prime}(\mathrm{x})=0$ for all x in the interval (a, b), then f is constant on (a, b).

Corollary: If $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})$ for all x in an interval (a, b) then $\mathrm{f}-\mathrm{g}$ is constant on (a,b); i.e. $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+$ const.

