$$f'(x) > 0 \Rightarrow \text{increase}$$

$$f''(x) > 0 \Rightarrow concave up$$

$$f'(x) < 0 \Rightarrow decrease$$

$$f''(x) < 0 \Longrightarrow concave\ down$$

$$f'(x) = 0 / DNE \Rightarrow$$
 critical points $f''(x) = 0 \Rightarrow$ Inflection point

Ex: Find where the function is increasing / decreasing / concave up / concave down.

a)
$$f(x) = x^3 + 5x^2 - 8x + 3$$

b)
$$f(x) = x^{3/5}(x-3)$$

Ex- Sketch a possible graph of the function satisfies:

a)
$$f(0) = 2; f(2) = -1, f(-4) = 0; f'(0) = f'(2) = 0$$

 $f'(x) > 0; 0 < x < 4; f'(x) < 0; x < 0; x > 4$

b)
$$f'(2) = 0; f'(0) = 1,$$

$$f'(x) > 0 \Leftrightarrow 0 < x < 2; \qquad f'(x) < 0 \Leftrightarrow x > 2, f''(x) < 0 \Leftrightarrow 0 < x < 4$$

$$f''(x) > 0 \Leftrightarrow x > 4, \lim_{x \to \infty} f(x) = 1, f(-x) = -f(x) \text{ for all } x$$

Section 4.4 Indeterminate Forms and L'Hospital's Rule

In general, we are considering the limit of the form $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\infty}{\infty}$

<u>L'Hospital's Rule</u>: Suppose f and g are differentiable and $g'(x) \neq 0$ near a (except possibly at a). Suppose that

$$\lim_{x \to a} f(x) = 0 \qquad \text{and} \qquad \lim_{x \to a} g(x) = 0$$
or
$$\lim_{x \to a} f(x) = \pm \infty \qquad \text{and} \qquad \lim_{x \to a} g(x) = \pm \infty$$

In other word, we are having the indeterminate forms such as $\frac{0}{0}$, or $\frac{\infty}{\infty}$

Then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Proof:
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \frac{f'(a)}{g'(a)} = \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

Ex: Evaluate the following limits:

a)
$$\lim_{x \to 0} \frac{\sin(2x)}{x}$$

b)
$$\lim_{x\to\infty}\frac{e^x}{x^2}$$

c)
$$\lim_{x \to 0} \frac{e^x - 1 - x - (x^2 / 2)}{x^3}$$

d)
$$\lim_{x \to 0} \frac{\tan x - x}{x^3}$$

Ex: Evaluate the following limits:

a) $\lim_{x\to 0^+} x \ln x$

b)
$$\lim_{x\to\infty}e^{-x^2}\int_0^xe^{t^2}dt$$

c) $\lim_{x \to \infty} x \sin \frac{1}{x}$

Indeterminate Differences: $\infty - \infty$

If $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$, then the limit $\lim_{x \to a} [f(x) - g(x)]$

Ex: Evaluate

a)
$$\lim_{x\to(\pi/2)^{-}} (\sec x - \tan x)$$

b)
$$\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

c)
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x} \right)$$

Indeterminate Powers:

 $\lim_{x \to a} [f(x)]^{g(x)} \Leftrightarrow \begin{cases} 0^0 \\ \infty^0 \text{ Each of these three cases can be treated either by taking the natural logarithm i.e.} \\ 1^{\infty} \end{cases}$

Let
$$y = f(x)^{g(x)} \Leftrightarrow \ln y = g(x) \ln f(x)$$

Note:
$$\lim_{x \to a} \ln f(x) = L \Rightarrow \lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^{\lim_{x \to a} \ln f(x)} = e^{L}$$

Ex: Evaluate the following limits

a)
$$\lim_{x \to 0^+} \left(1 + \sin 4x\right)^{\cot x}$$

b)
$$\lim_{x \to \infty} x^{1/x}$$

Ex: Show that
$$\lim_{x\to\infty} \left(1 + \frac{c}{x}\right)^x = e^c$$
 for any real number c.

$$\lim_{x \to \infty} \left(\frac{3x - 5}{3x + 2} \right)^{2x + 3}$$

<u>Cauchy's Mean Value Theorem</u>: Suppose that the functions f and g are continuous on [a, b] and differentiable on (a, b), and $g'(x) \neq 0$ for all $x \in (a,b)$. Then, there is a number $c \in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$