Section 2.1-2.2: \quad The limit of a function

Given a function $f(x)$, we want to know what happens to $f(x)$ when x behaves in a certain way, say x approaches to a certain number (either from one side or both sides) or when x approaches to (positive/negative) infinity.

Def: We write: $\lim _{x \rightarrow a} f(x)=L$ and say "the limit of $\mathrm{f}(\mathrm{x})$, as x approaches a, y approaches L "
i.e. if we make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a but not equal to a.

Ex: Evaluate the limits of the following:
a) $\quad \lim _{x \rightarrow 6} f(x)=$
b) $\quad \lim _{x \rightarrow 4} f(x)=$
c) $\quad \lim _{x \rightarrow-1} f(x)=$
d) $\quad \lim _{x \rightarrow-2} f(x)=$
e) $\quad \lim _{x \rightarrow-5} f(x)=$
f) $\quad \lim _{x \rightarrow \infty} f(x)=$

g) $\quad \lim _{x \rightarrow-\infty} f(x)=$

One side limits: $\lim _{x \rightarrow a^{-}} f(x) ;$ for $x<a$ and $\lim _{x \rightarrow a^{+}} f(x)$ for $x>a$

Ex: Let's explore this concept by examining the graph of the following function.
$f(x)=\left\{\begin{array}{cl}3 x-2 ; & \text { if } x \leq 3 \\ \frac{5}{x+2}+6 ; & \text { if } 3<x<5 \text { Now look at the graph and answer the following questions: } \\ 3 ; & \text { if } x \geq 5\end{array}\right.$
a) $\quad \lim _{x \rightarrow 3^{-}} f(x)$ and $\lim _{x \rightarrow 3^{+}} f(x)$ then determine $\lim _{x \rightarrow 3} f(x)=$
b) $\quad \lim _{x \rightarrow 5^{-}} f(x)$ and $\lim _{x \rightarrow 5^{+}} f(x)$ then determine $\lim _{x \rightarrow 5} f(x)=$
c) $\quad \lim _{x \rightarrow 4} f(x)$ and $\lim _{x \rightarrow 0} f(x)$
d) $\quad \lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$

Ex: Sketch the graph of the following functions, and then determine their limits:
a) $\quad \lim _{\pi^{-}} \tan x$
b) $\quad \lim _{x \rightarrow \pi} \csc x$
c) $\quad \lim _{x \rightarrow 0^{+}} \ln (x)$
d) $\quad \lim _{x \rightarrow \pi} \sin \left(\frac{x}{2}\right)$
e) $\quad \lim _{x \rightarrow \infty} \tan ^{-1}(x)$
f) $\quad \lim _{x \rightarrow-\infty} \tan ^{-1}(x)$
g) $\quad \lim _{x \rightarrow 4} \frac{1}{(x-4)^{7}}$
h) $\quad \lim _{x \rightarrow 4} \frac{1}{(x-4)^{8}}$

Definition: $\quad \lim _{x \rightarrow a} f(x)=L ; \quad$ iff $\quad \lim _{x \rightarrow a^{-}} f(x)=L \quad$ and $\lim _{x \rightarrow a^{+}} f(x)=L$
Definition: Let f be a function defined on both sides of a, except possibly at a itself. Then $\lim _{x \rightarrow a} f(x)=\infty$ means that the values of $\mathrm{f}(\mathrm{x})$ can be made arbitrarily large by taking x sufficiently close to a , but not equal to a.

So far, if we know the graph of a function, we can easily determine the limit of a function, our main goal is what if we don't know the graph of a function, how do we determine the limit of a function algebraically?
$\Rightarrow 4-$ Steps techniques:

Ex: Determine the limit of the following:
a) $\quad \lim _{x \rightarrow 3} \frac{2 x^{2}-5 x-3}{3 x^{2}-4 x-15}$
b) $\quad \lim _{x \rightarrow-2} \frac{\sqrt{5-2 x}-3}{x^{2}-4}$
c) $\quad \lim _{t \rightarrow 0} e^{3 \cos (2 x)}$
d) $\quad \lim _{x \rightarrow-1} \frac{\left|2 x^{2}+x-1\right|}{3 x^{2}+x-2}$

- Define vertical/horizontal asymptotes by taking limit. $\left\{\begin{array}{l}\lim _{x \rightarrow a} f(x)= \pm \infty(\text { vertical }) \\ \lim _{x \rightarrow \pm \infty} f(x)=a(\text { horizontal })\end{array}\right.$

Ex: \quad Sketch the graph of a function $\mathrm{f}(\mathrm{x})$ that satisfies the following conditions:
$\lim _{x \rightarrow 3^{-}} f(x)=5 ; \lim _{x \rightarrow 3^{+}} f(x)=-2 ; \lim _{x \rightarrow \infty} f(x)=-2 ; \lim _{x \rightarrow-\infty} f(x)=-\infty$
$f(3)=0 ; \lim _{x \rightarrow 7^{+}} f(x)=\infty ; \lim _{x \rightarrow 7^{-}} f(x)=-\infty$

Limit laws: Suppose that c is a constant and the limits $\lim _{x \rightarrow a} f(x) ; \lim _{x \rightarrow a} g(x)$ exits. Then

1. $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
3. $\lim _{x \rightarrow a}^{x \rightarrow a}[f(x) g(x)]=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$
4. $\quad \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} ; \quad \lim _{x \rightarrow a} g(x) \neq 0$
5. $\quad \lim _{x \rightarrow a}[f(x)]^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}$
6. $\lim _{x \rightarrow a} \mathrm{c}=\mathrm{c}$
7. $\lim _{x \rightarrow a} x^{n}=a^{n}$
8. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$
9. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$
10. $\lim _{x \rightarrow a} b^{f(x)}=b^{\lim _{x \rightarrow a} f(x)}$

Theorem: If f is a polynomial or a rational function and a is in the domain of f , then $\lim _{x \rightarrow a} f(x)=f(a)$

Ex: \quad Evaluate the following limits and justify each step
a) $\quad \lim _{x \rightarrow 3} e^{\frac{2 x^{2}-5 x-3}{3 x^{2}-5 x-12}}$
b) $\quad \lim _{x \rightarrow-3} \sqrt[3]{\frac{2 x^{2}+x-15}{x^{2}+7 x+12}}$
c) $\quad \lim _{h \rightarrow 0} \frac{\frac{1}{h+5}-\frac{1}{5}}{h}$
d) $\quad \lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{2 h+9}}-\frac{1}{3}}{h}$
e) $\quad \lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$
f) $\quad \lim _{x \rightarrow 1} f(x)$ where $f(x)= \begin{cases}3 x^{2}+x-7 ; & \text { if } x<1 \\ 5 \sin \left(\frac{\pi x}{2}\right)-7 x-1 ; & \text { if } x \geq 1\end{cases}$

Theorem: If $f(x) \leq g(x)$ when x is near a (except possibly at a) and the limits of f and g both exit as x approaches a, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$
The Squeeze theorem: If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L \Rightarrow \lim _{x \rightarrow a} g(x)=L$

Ex: Evaluate the following limits:
a) $\quad \lim _{x \rightarrow 0} x^{6} \sin \left(\frac{3}{2 x^{2}}\right)$
b) If $3 x \leq f(x) \leq x^{3}+2$ for $0 \leq x \leq 2$, evaluate $\lim _{x \rightarrow 1} f(x)$.
c) If $\frac{1}{2}-\frac{x^{2}}{24}<\frac{1-\cos x}{x^{2}}<\frac{1}{2}$ for x close to zero. Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$

