<u>Section 2.1 – 2.2:</u> The limit of a function

Given a function f(x), we want to know what happens to f(x) when x behaves in a certain way, say x approaches to a certain number (either from one side or both sides) or when x approaches to (positive/negative) infinity.

Def: We write: $\lim_{x \to a} f(x) = L$ and say "the limit of f(x), as x approaches a, y approaches L" i.e. if we make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a but not equal to a.

g) $\lim_{x \to -\infty} f(x) =$

<u>**One side limits:**</u> $\lim_{x \to a^-} f(x)$; for x < a and $\lim_{x \to a^+} f(x)$ for x > a

Let's explore this concept by examining the graph of the following function. Ex:

 $\begin{bmatrix} 3x-2 ; & if x \leq 3 \end{bmatrix}$ $f(x) = \begin{cases} 5x + 2, & y \neq x = 5 \\ \frac{5}{x+2} + 6; & \text{if } 3 < x < 5 \text{ Now look at the graph and answer the following questions:} \\ 3; & \text{if } x \ge 5 \end{cases}$ a) $\lim_{x \to 3^{-}} f(x) \text{ and } \lim_{x \to 3^{+}} f(x) \text{ then determine } \lim_{x \to 5} f(x) = \\ b) \qquad \lim_{x \to 5^{-}} f(x) \text{ and } \lim_{x \to 5^{+}} f(x) \text{ then determine } \lim_{x \to 5} f(x) = \\ content f(x) = con$

- $\lim_{x \to 4} f(x) \text{ and } \lim_{x \to 0} f(x)$ c)
- $\lim_{x\to\infty} f(x) \text{ and } \lim_{x\to\infty} f(x)$ d)

Ex: Sketch the graph of the following functions, and then determine their limits:

a)	lim tan x	b)	$\lim \csc x$
	π^-	· · · · · · · · · · · · · · · · · · ·	$x \rightarrow \pi$
	$x \rightarrow \frac{1}{2}$		

c)
$$\lim_{x \to 0^+} \ln(x)$$
 d) $\lim_{x \to \pi} \sin\left(\frac{x}{2}\right)$

e)
$$\lim_{x \to \infty} \tan^{-1}(x)$$
 f) $\lim_{x \to -\infty} \tan^{-1}(x)$

g)
$$\lim_{x \to 4} \frac{1}{(x-4)^7}$$
 h) $\lim_{x \to 4} \frac{1}{(x-4)^8}$

<u>Definition</u>: $\lim_{x \to a} f(x) = L$; iff $\lim_{x \to a^-} f(x) = L$ and $\lim_{x \to a^+} f(x) = L$

<u>Definition</u>: Let f be a function defined on both sides of a, except possibly at a itself. Then $\lim_{x \to a} f(x) = \infty$ means that the values of f(x) can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

So far, if we know the graph of a function, we can easily determine the limit of a function, our main goal is what if we don't know the graph of a function, how do we determine the limit of a function algebraically?

 \Rightarrow 4 – Steps techniques:

Ex: Determine the limit of the following:

a)
$$\lim_{x \to 3} \frac{2x^2 - 5x - 3}{3x^2 - 4x - 15}$$

b)
$$\lim_{x \to -2} \frac{\sqrt{5 - 2x - 3}}{x^2 - 4}$$

d)
$$\lim_{x \to -1} \frac{|2x^2 + x - 1|}{3x^2 + x - 2}$$

-

Define vertical/horizontal asymptotes by taking limit.
$$\begin{cases} \lim_{x \to a} f(x) = \pm \infty (vertical) \\ \lim_{x \to \pm \infty} f(x) = a (horizontal) \end{cases}$$

Ex: Sketch the graph of a function f(x) that satisfies the following conditions:
$$\lim_{x \to \pm \infty} f(x) = -2; \lim_{x \to \pm \infty} f(x) = -\infty$$

 $\lim_{x \to 3^{-}} f(x) = 5; \lim_{x \to 3^{+}} f(x) = -2; \lim_{x \to \infty} f(x) = -2; \lim_{x \to -\infty} f(x)$ $f(3) = 0; \lim_{x \to 7^{+}} f(x) = \infty; \lim_{x \to 7^{-}} f(x) = -\infty$

Calculating Limits Using the Limit Laws 2.3

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$; $\lim_{x\to a} g(x)$ exits. Then Limit laws:

1.
$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

3.
$$\lim_{x \to a} [f(x)g(x)] = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right)$$

4.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f'(x)}{\lim_{x \to a} g(x)}; \quad \lim_{x \to a} g(x) \neq 0$$

5.
$$\lim_{x \to a} [f(x)]^n = \left(\lim_{x \to a} f(x)\right)^n$$

6.
$$\lim_{x\to a} \mathbf{c} = \mathbf{c}$$

7. $\lim_{x\to a} x^n = a^n$

8.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$

9.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

$$10. \quad \lim_{x \to a} b^{f(x)} = b^{\lim_{x \to a} b}$$

- **Theorem:** If f is a polynomial or a rational function and a is in the domain of f, then $\lim_{x \to a} f(x) = f(a)$
- Evaluate the following limits and justify each step Ex: $\frac{2x^2-5x-3}{3x^2-5x-12}$ а

a)
$$\lim_{x\to 3} e^{\overline{3x^2-5x-12x}}$$

b)
$$\lim_{x \to -3} \sqrt[3]{\frac{2x^2 + x - 15}{x^2 + 7x + 12}}$$

c)
$$\lim_{h \to 0} \frac{\frac{1}{h+5} - \frac{1}{5}}{h}$$

d)
$$\lim_{h \to 0} \frac{\frac{1}{\sqrt{2h+9}} - \frac{1}{3}}{h}$$

e)
$$\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$$

f)
$$\lim_{x \to 1} f(x) \text{ where } f(x) = \begin{cases} 3x^2 + x - 7; & \text{if } x < 1\\ 5\sin\left(\frac{\pi x}{2}\right) - 7x - 1; & \text{if } x \ge 1 \end{cases}$$

<u>Theorem</u>: If $f(x) \le g(x)$ when x is near a (except possibly at a) and the limits of f and g both exit as x approaches a, then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$ <u>The Squeeze theorem</u>: If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \Longrightarrow \lim_{x \to a} g(x) = L$$

Ex: Evaluate the following limits:

a)
$$\lim_{x\to 0} x^6 \sin\left(\frac{3}{2x^2}\right)$$

b) If
$$3x \le f(x) \le x^3 + 2$$
 for $0 \le x \le 2$, evaluate $\lim_{x \to 1} f(x)$.

c) If
$$\frac{1}{2} - \frac{x^2}{24} < \frac{1 - \cos x}{x^2} < \frac{1}{2}$$
 for x close to zero. Evaluate $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$