Section 2.4 The precise Definition of a Limit

Note that limit of a function $f(x)$ is L as x approaches to a number a, means that as x gets closer to a, then $f(x)$ gets closer to L. But in mathematics, what does it mean by "closer to a", it's very vague, we need a more precise definition of limits.

Ex: $\quad \lim _{x \rightarrow 4}(2 x-5)=3$

Def: Suppose that $f(x)$ is defined in an open interval containing the point a except possibly not at a itself). Then we say that the number L is the limit of $f(x)$ as x approaches a $\lim _{x \rightarrow a} f(x)=L$ provided the following criterion is satisfied: Given any number $\varepsilon>0$, there exists a corresponding number δ such that $|f(x)-L|<\varepsilon$ for all x such that $0<|x-a|<\delta$
Notation: Given $\forall \varepsilon>0$ n.t.s. $\exists \delta>0$ such that $|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon$
Ex: Using $\varepsilon-\delta$ definition of limit to prove the following:
a) $\quad \lim _{x \rightarrow 4}(3 x-9)=3$
b) $\quad \lim _{x \rightarrow 4}\left(3-\frac{1}{2} x\right)=1$
c) $\quad \lim _{x \rightarrow-7} \frac{x^{2}+5 x-14}{x+7}=-9$
c) $\quad \lim _{x \rightarrow 2}\left(x^{2}-7 x+5\right)=-5$
d) $\quad \lim _{x \rightarrow \frac{1}{2}}\left(4 x^{2}-5 x+3\right)=\frac{3}{2}$

Limits as x approaches $\pm \infty$
Note: $\lim _{x \rightarrow \pm} \frac{k}{x^{n}}=0$ and $\lim _{x \rightarrow \infty} r^{n}=0$ iff $|r|<1$ for any constant k and $n>0 \rightarrow$
Limit of $\lim _{x \rightarrow \pm \infty} \frac{P(x)}{Q(x)} \Rightarrow$ Divide top and bottom by the dominant terms.

Ex: Evaluate the following:
a) $\quad \lim _{x \rightarrow \infty} \frac{7 x^{3}-2 x+5}{4 x^{3}+3 x^{2}-1}$
b) $\quad \lim _{x \rightarrow \infty} \frac{\sqrt[3]{8 x^{6}-3 x^{5}+4}}{10 x^{2}-3 x+4}$
c) $\quad \lim _{x \rightarrow \infty} \frac{3^{x}-5^{x}+7^{x}}{7^{x+1}+2^{x}-5^{x-1}}$
d) $\quad \lim _{x \rightarrow \infty} \frac{\cos (2 x-\pi)}{\sqrt{7 x+5}}$
e) $\quad \lim _{x \rightarrow \infty} e^{\frac{7 x^{2}-5}{2 x^{2}+x-3}}$
f) $\quad \lim _{x \rightarrow \infty}(\ln (3 x+1)-\ln (7 x+5))$
g) $\quad \lim _{x \rightarrow \infty}\left(\frac{1}{\sqrt{3 x^{2}+4 x}-\sqrt{3 x^{2}-1}}\right)$

