
Section 2.5 Continuity 
Let’s look at a function is not continuous at x = a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Def: A function f is continuous at a number a if  
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Ex: Determine if f(x) is continuous at x = a.  If not, indicate f(x) is jumped / removable discontinuous 
 at x = a. 
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Theorem:   - Any polynomial, sine, cosine, exponential function is continuous everywhere 

- Any rational function is continuous on its domain. 
 
 



 
Def: A function f is continuous from the right at a number a if )()(lim afxf
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Def:  A function f is continuous on an interval if it is continuous at every number in the interval. 
 
 
Theorem: If f and g are continuous at a and c is a constant, then the following functions are also continuous 
at a 

f+g, f-g, cf, fg, f/g. 
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Theorem: If g is continuous at a and f is continuous at g(a), then the composite function gf  (x) is 
continuous at a. 
 
Ex: Find a constant k so that the function is continuous everywhere. 
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The Intermediate Value Theorem (IVT): Suppose that f is continuous on the closed interval [a,b] and let N 
be any number between f(a) and f(b).  Then there exists a number c in (a,b) such that .)( Ncf =  
 



Ex: Show that there is a root of the equation 02364 23 =−+− xxx between 1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex: Using IVP to show that the following equation has at least one eral solution: 
 a) ( )2 sin 3 5xe x= +  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 b) 2 3 1 2x x= + +  
 
 
 


