Section 2.5 Continuity

Let's look at a function is not continuous at $\mathrm{x}=\mathrm{a}$.

Def: A function f is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a) \Leftrightarrow\left\{\begin{array}{l}
\lim _{x \rightarrow a^{+}} f(x)=L \\
\lim _{x \rightarrow a^{-}} f(x)=L \\
f(a)=L
\end{array}\right.
$$

Ex: Determine if $f(x)$ is continuous at $x=$ a. If not, indicate $f(x)$ is jumped / removable discontinuous at $\mathrm{x}=\mathrm{a}$.
a) $\quad f(x)=\left\{\begin{array}{l}\sqrt{3 x+1}+2 ; \text { if } x>5 \\ 3 \sin \left(\frac{\pi x}{10}\right)+x-2 ; \text { if } x \leq 5\end{array} ; a=5\right.$
b) $\quad f(x)=\left\{\begin{array}{l}\frac{2 x-1}{x+2} \text { if } x>-3 \\ x^{2}-x-1 ; \text { if } x \geq-3\end{array} ; a=-3\right.$
c) $f(x)=\left\{\begin{array}{c}\frac{2 x^{2}+5 x-3}{3 x^{2}+8 x-3} \text { if } x \neq-3 \\ \frac{2}{3} ; \text { if } x=-3\end{array} ; a=-3\right.$

Theorem: - Any polynomial, sine, cosine, exponential function is continuous everywhere - Any rational function is continuous on its domain.

Def: A function f is continuous from the right at a number a if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ and f is continuous from the left at a number a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$

Theorem: If f and g are continuous at a and c is a constant, then the following functions are also continuous at a
$\mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g}, \mathrm{cf}, \mathrm{fg}, \mathrm{f} / \mathrm{g}$.
Theorem: If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then $\lim _{x \rightarrow a} f(g(x))=f(b)$. In other words,

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Ex: Evaluate $\lim _{x \rightarrow 1} \arcsin \left(\frac{1-\sqrt{x}}{1-x}\right)=\arcsin \left(\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{(1-\sqrt{x})(1+\sqrt{x})}\right)=\arcsin \left(\lim _{x \rightarrow 1} \frac{1}{1+\sqrt{x}}\right)=\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$
Theorem: If g is continuous at a and f is continuous at $\mathrm{g}(\mathrm{a})$, then the composite function $f \circ g(\mathrm{x})$ is continuous at a.

Ex: Find a constant k so that the function is continuous everywhere.

$$
f(x)=\left\{\begin{array}{l}
2 x^{2}+k x+3 ; \text { if } x>2 \\
k \sin \left(\frac{\pi x}{4}\right)-3 x ; \text { if } x \leq 2
\end{array}\right.
$$

The Intermediate Value Theorem (IVT): \quad Suppose that f is continuous on the closed interval $[\mathrm{a}, \mathrm{b}]$ and let N be any number between $\mathrm{f}(\mathrm{a})$ and $\mathrm{f}(\mathrm{b})$. Then there exists a number c in (a, b) such that $f(c)=N$.

Ex: \quad Show that there is a root of the equation $4 x^{3}-6 x^{2}+3 x-2=0$ between 1 and 2 .

Ex: Using IVP to show that the following equation has at least one eral solution:
a) $\quad e^{2 x}=\sin (3 x)+5$
b) $\quad x^{2}=3 \sqrt{x+1}+2$

