Section 3.2 Derivatives of Polynomials and Exponential Functions

The Product and Quotient Rules

Ex: Prove the Product Rule: $f(x)=u(x) v(x) \Rightarrow f^{\prime}(x)=\frac{d u}{d x} v(x)+u(x) \frac{d v}{d x}$

Ex: Find the derivative of the following functions
a) $\quad f(x)=\left(3 x^{2}+5\right)(7 x-2)$
b) $\quad f(x)=\left(5 x^{3}-5 x^{2}+7 x-3\right) e^{x}$

Ex: If $f(x)=\sqrt{x} g(x)$, where $g(4)=2$ and $g^{\prime}(4)=3$, find $f^{\prime}(4)$

Ex: \quad Using product rule to differentiate $f(x)=h(x) g(x) k(x)$

Prove the Quotient Rule: $\quad f(x)=\frac{u(x)}{v(x)} \Rightarrow f^{\prime}(x)=\frac{u^{\prime}(x) v(x)-v^{\prime}(x) u(x)}{(v(x))^{2}}$

Ex: Find the derivative of the following functions:
a) $f(x)=\frac{4 x^{3}+2 x}{x^{2}+5}$
b) $\quad f(x)=\frac{\left(5 x^{2}-7 x\right) e^{x}}{x^{3}+1}$

Ex: Find equation of tangent line to the function: $f(x)=\frac{3 x^{3}+1}{x^{2}+x-3}$ at $x=1$

Ex: Find the equation of the tangent lines to the curve $y=\frac{x-1}{x+1}$ that are parallel to the line $x-2 y=1$

Ex: Find equation of the tangent line to the following curves at given points.
a) $y=\frac{1}{1+x^{2}}$ at $\left(-1, \frac{1}{2}\right)$
b) $y=\frac{x}{1+x^{2}}$ at $\left(3, \frac{1}{3}\right)$

