Section 3.6

The Chain Rule

How do we differentiate, say $\left(x^{2}-x+1\right)^{100}$, even though the function is quite simple, but we don't want to expand it and then find the derivative term by term \rightarrow chain rule?

The Chain Rule: $f(x)=(u \circ v)(x) \Rightarrow f^{\prime}(x)=u^{\prime}(v(x)) v^{\prime}(x)=\frac{d u}{d x}(v(x)) \frac{d v}{d x}$

Ex: Find the derivative of the following functions:
a) $f(x)=\left(2 x^{2}-5 x+1\right)^{50}$
b) $f(x)=\sqrt[3]{5 x^{2} \sin x}$
c) $f(x)=\sin ^{3}\left(\frac{x^{3}+2}{3 x^{4}-1}\right)$
d) $f(x)=\tan ^{3}\left(\sin \left(\sqrt{3 x^{2}+1}\right)\right)$
e) $f(x)=\sqrt[5]{\frac{x^{5}+2}{\cot (3 x+1)}}$

Ex: Find an equation of the tangent line to the curve at the given point. $f(x)=2 x \sin ^{3}(x+1) ; x=-1$

Ex: Find second derivative of $f(x)=(2 x-3) \sin (2 x)$

Ex: Find $\frac{d^{100}}{d x^{100}}(\sin (2 x))$

Section 3.7

Implicit Differentiation

So far all the differentiation that we have discussed, have the same type of problems, we call those are explicit, because y or $f(x)$ have been explicitly expressed as a function of x. How about equations that we can not express y explicitly as a function of x, such as equation of a circle...
Ex: Differentiate the following equations:
a) $x^{2}-5 x y+y^{3}=1$
b) $x^{3}+\sin y-5 x+3 y=0$
c) $\sin (x+y)=y^{2} \cos x$

Ex: Find an equation of the tangent line to the circle $x^{2}+y^{2}=25$ at $x=2$
Ex: a) Find y' if $x^{3}+y^{3}=6 x y$
b) Find the tangent to the folium of Descartes $x^{3}+y^{3}=6 x y$ at the point $(3,3)$
c) At what points on the curve is the tangent line horizontal?

Ex: Find equations of all the tangent lines to the ellipse $3 x^{2}+4 y^{2}=36$ where the slope of the tangent line is -1.
Ex: Find the coordinates of the points on the graph of $(x-2 y-1)^{2}+(x+y)^{2}=16$ where the tangent line is horizontal.

Orthogonal Trajectories:

Def: Two curves are called orthogonal if at each point of intersection their tangent lines are perpendicular.

Ex: Consider the graph of all ordered pairs (x, y) that satisfy the equation $\frac{x}{x^{2}+y^{2}}=4$ and the graph of the ordered pairs that satisfy the equation $\frac{y}{x^{2}+y^{2}}=-2$. Show that these two graphs is orthogonal; that is, any point where the graphs intersect, the tangents to the graphs are at right angles to each other.

Section 3.8
 Higher Derivatives

Notation: $\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}} ; f^{\prime \prime}(x)=D^{2} f(x) ; f^{(n)}(x)=D^{n} f(x)$
Ex: Given the function $f(x)=x^{3} \cos (2 x-1)$, find and interpret $\mathrm{f}^{\prime}(\mathrm{x})$.
Another example here to find higher derivatives, also mention derivative of polynomial of degree n , then derivative $\mathrm{n}+1^{\text {st }}$ of that polynomial would give the zero function. Derivative of exponential function e^{x} is always that function regardless of the degree of differentiation.

- Mention that if $s(t)$ is a position function then $s^{\prime}(t)$ is the velocity, and $s^{\prime \prime}(t)$ is the acceleration.

Ex: The position of a particle is given by the equation $s(t)=t^{3}-6 t^{2}+9 t$ where t is measured in seconds and s in meters.
a) Find the acceleration at time t. What is the acceleration after 4 s ?
b) Graph the position, velocity, and acceleration functions for $0 \leq t \leq 5$.
c) When is the particle speeding up? When is it slowing down?

Ex: If $f(x)=\frac{1}{x} \Rightarrow$ find $f^{(n)}(x)$
Ex: Find y' if $x^{4}+y^{4}=16$
Ex: Find $D^{75} \sin x$

