Section 3.6 The Chain Rule

How do we differentiate, say $(x^2 - x + 1)^{100}$, even though the function is quite simple, but we don't want to expand it and then find the derivative term by term \rightarrow chain rule?

The Chain Rule: $f(x) = (u \circ v)(x) \Rightarrow f'(x) = u'(v(x))v'(x) = \frac{du}{dx}(v(x))\frac{dv}{dx}$

- Ex: Find the derivative of the following functions:
 - a) $f(x) = (2x^2 5x + 1)^{50}$

b)
$$f(x) = \sqrt[3]{5x^2 \sin x}$$

c)
$$f(x) = \sin^3\left(\frac{x^3+2}{3x^4-1}\right)$$

d)
$$f(x) = \tan^3\left(\sin\left(\sqrt{3x^2+1}\right)\right)$$

e)
$$f(x) = \sqrt[5]{\frac{x^5 + 2}{\cot(3x + 1)}}$$

Ex: Find an equation of the tangent line to the curve at the given point. $f(x) = 2x \sin^3(x+1); x = -1$

Ex: Find second derivative of $f(x) = (2x-3)\sin(2x)$

Ex: Find
$$\frac{d^{100}}{dx^{100}}(\sin(2x))$$

Section 3.7

Implicit Differentiation

So far all the differentiation that we have discussed, have the same type of problems, we call those are explicit, because y or f(x) have been explicitly expressed as a function of x. How about equations that we can not express y explicitly as a function of x, such as equation of a circle...

Ex: Differentiate the following equations:

a)
$$x^2 - 5xy + y^3 = 1$$

- b) $x^3 + \sin y 5x + 3y = 0$
- c) $\sin(x+y) = y^2 \cos x$

Ex: Find an equation of the tangent line to the circle $x^2 + y^2 = 25$ at x = 2

- Ex: a) Find y' if $x^{3} + y^{3} = 6xy$
 - b) Find the tangent to the folium of Descartes $x^3 + y^3 = 6xy$ at the point (3,3)
 - c) At what points on the curve is the tangent line horizontal?
- Ex: Find equations of all the tangent lines to the ellipse $3x^2 + 4y^2 = 36$ where the slope of the tangent line is -1.
- Ex: Find the coordinates of the points on the graph of $(x 2y 1)^2 + (x + y)^2 = 16$ where the tangent line is horizontal.

Orthogonal Trajectories:

Def: Two curves are called orthogonal if at each point of intersection their tangent lines are perpendicular.

Ex: Consider the graph of all ordered pairs (x, y) that satisfy the equation $\frac{x}{x^2 + y^2} = 4$ and the graph of the

ordered pairs that satisfy the equation $\frac{y}{x^2 + y^2} = -2$. Show that these two graphs is orthogonal; that is, any point where the graphs intersect, the tangents to the graphs are at right angles to each other.

Section 3.8 Higher Derivatives

Notation: $\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}; f''(x) = D^2f(x); f^{(n)}(x) = D^nf(x)$

Ex: Given the function $f(x) = x^3 \cos(2x - 1)$, find and interpret f''(x).

Another example here to find higher derivatives, also mention derivative of polynomial of degree n, then derivative $n+1^{st}$ of that polynomial would give the zero function. Derivative of exponential function e^x is always that function regardless of the degree of differentiation.

- Mention that if s(t) is a position function then s'(t) is the velocity, and s''(t) is the acceleration.
- Ex: The position of a particle is given by the equation $s(t) = t^3 6t^2 + 9t$ where t is measured in seconds and s in meters.
 - a) Find the acceleration at time t. What is the acceleration after 4s?
 - b) Graph the position, velocity, and acceleration functions for $0 \le t \le 5$.
 - c) When is the particle speeding up? When is it slowing down?

Ex: If
$$f(x) = \frac{1}{x} \Rightarrow \text{find } f^{(n)}(x)$$

- Ex: Find y'' if $x^4 + y^4 = 16$
- Ex: Find $D^{75} \sin x$