
 Section 11.11  The Binomial Series 
From algebra, how do we expand two – term – expression  Pascal Triangle  Binomial for positive integer 
exponent. 
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One of Newton’s accomplishments was to extend the Binomial Theorem to the case in which k is no longer a 
positive integer.  In this case for ( )kba + is no longer a finite sum; it becomes an infinite series.  Let’s exam the 
Maclaurin series of ( )kx+1 .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The Binomial Series:  If k is any real number and 1<x , then ( ) ∑
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Binomial Series:  ( ) ∑
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Ex: Using Binomial series to expand:  ( )
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b)  ( ) 1f x x= +  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
c) ( ) 3 1f x x= +    
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Section 11.12 Applications of Taylor Polynomials 
Approximating Functions by polynomials 

Suppose that ( )xf  is equal to the sum of its Taylor series at a:  ( )
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So, we let ( )xTn be the first nth partial sum of this series and called it the nth-degree Taylor polynomial of f at a. 
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We have from Taylor Inequality  
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Ex: a) Approximate the function ( ) 3 xxf = by Taylor polynomial of degree 2 at 8=a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b) How accurate is this approximation when 97 ≤≤ x ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ex: The third Maclaurin polynomial for xsin is given by:  
!3

sin
3xxx −≈ .  Use Taylor’s Theorem to 

 approximate ( )1.0sin by ( )1.03T and determine the accuracy of the approximation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex: Determine the degree of the Taylor polynomial ( )xTn expanded about 1=a that should be used to 

approximate ( )2.1ln  so that the error is less than 0.001. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ex: Approximate 02sin accurate to four decimal places. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ex: a) What is the maximum error possible in using the approximation 
!5!3

sin
53 xxxx +−= where  

  ?3.03.0 ≤≤− x Use this approximation to find 012sin corrects to six decimal places? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b) For what values of x is this approximation accurate to within 0.00005? 


