From algebra, how do we expand two - term - expression \rightarrow Pascal Triangle \rightarrow Binomial for positive integer exponent.

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{k} a^{n-k} b^{k}+\ldots+\binom{n}{n} b^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

One of Newton's accomplishments was to extend the Binomial Theorem to the case in which k is no longer a positive integer. In this case for $(a+b)^{k}$ is no longer a finite sum; it becomes an infinite series. Let's exam the Maclaurin series of $(1+x)^{k}$.

The Binomial Series: If k is any real number and $|x|<1$, then $(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}$ where $\binom{k}{n}=\frac{k!}{n!(k-n)!}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}$ and $\binom{k}{0}=1$

Binomial Series: $(1+x)^{m}=1+\sum_{k=1}^{\infty}\binom{m}{k} x^{k}$ where we define $\binom{m}{1}=m ;\binom{m}{2}=\frac{m(m-1)}{2!}$
And $\binom{m}{k}=\frac{m(m-1)(m-2) \ldots(m-k+1)}{k!}$ for $k \geq 3$
$\underline{\boldsymbol{E x}}: \quad$ Using Binomial series to expand: $f(x)=\frac{1}{(1+x)^{2}}$
b) $\quad f(x)=\sqrt{1+x}$
c) $\quad f(x)=\sqrt[3]{1+x}$
d) $\quad f(x)=\frac{1}{\left(3+8 x^{3}\right)^{3}}$

Section 11.12 Applications of Taylor Polynomials

Approximating Functions by polynomials
Suppose that $f(x)$ is equal to the sum of its Taylor series at a: $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$
So, we let $T_{n}(x)$ be the first nth partial sum of this series and called it the nth-degree Taylor polynomial of f at a.

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i} \text { and let the error be } R_{n}(x)=\sum_{i=n+1}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^{i}=\left|f(x)-T_{n}(x)\right|
$$

We have from Taylor Inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { where }\left|f^{(n+1)}(x)\right| \leq M
$$

Ex: a) Approximate the function $f(x)=\sqrt[3]{x}$ by Taylor polynomial of degree 2 at $a=8$
b) How accurate is this approximation when $7 \leq x \leq 9$?

Ex: The third Maclaurin polynomial for $\sin x$ is given by: $\sin x \approx x-\frac{x^{3}}{3!}$. Use Taylor's Theorem to approximate $\sin (0.1)$ by $T_{3}(0.1)$ and determine the accuracy of the approximation:

Ex: \quad Determine the degree of the Taylor polynomial $T_{n}(x)$ expanded about $a=1$ that should be used to approximate $\ln (1.2)$ so that the error is less than 0.001 .

Ex: Approximate $\sin 2^{0}$ accurate to four decimal places.

Ex: a) What is the maximum error possible in using the approximation $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$ where $-0.3 \leq x \leq 0.3$? Use this approximation to find $\sin 12^{\circ}$ corrects to six decimal places?
b) For what values of x is this approximation accurate to within 0.00005 ?

