Vector Differential Equations: Defective Coefficient Matrix

Def: Let A be an n by n matrix, and it has m eigenvectors where $\mathrm{m}<\mathrm{n}$. Then A is called a defective matrix.

Ex: \quad Solve $\frac{\overrightarrow{d x}}{d t}=A \vec{x}$ where $\left.a\right) \quad A=\left[\begin{array}{ll}6 & -8 \\ 2 & -2\end{array}\right]$
b) $\quad A=\left[\begin{array}{rr}0 & 1 \\ -9 & 6\end{array}\right]$

What if Eigenvalue of multiplicity three: Say a matrix A has eigenvalue of multiplicity 3 with eigenvector K.

Then we have: $\left\{\begin{array}{l}(A-\lambda I) \vec{K}=\overrightarrow{0} \\ (A-\lambda I) \vec{P}=\vec{K} \\ (A-\lambda I) \vec{Q}=\vec{P}\end{array}\right.$
Then the general solution:
$\overrightarrow{x(t)}=C_{1} \overrightarrow{x_{1}}+C_{2} \overrightarrow{x_{2}}+C_{3} \overrightarrow{x_{3}}$ where $\overrightarrow{x_{1}}=e^{\lambda t} \vec{K} ; \quad \overrightarrow{x_{2}}=e^{\lambda t}(\vec{P}+t \vec{K})$ and $\overrightarrow{x_{3}}=e^{\lambda t}\left(\vec{Q}+t \vec{P}+\frac{t^{2}}{2!} \vec{K}\right)$
That means: the solution: $\overrightarrow{x(t)}=C_{1} e^{\lambda t} \vec{K}+C_{2} e^{\lambda t}(\vec{P}+t \vec{K})+C_{3} e^{\lambda t}\left(\vec{Q}+t \vec{P}+\frac{t^{2}}{2!} \vec{K}\right)$
d) $A=\left[\begin{array}{rrr}1 & 2 & 0 \\ 1 & 1 & 2 \\ 0 & -1 & 1\end{array}\right]$
e) $A=\left[\begin{array}{lll}2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2\end{array}\right]$

