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Chapter 5   Spring / Mass Systems: 
  Oscillations of a Mechanical System 
Spring/Mass Systems:  
 
 
 
Free Undamped Motion. 
 
 
 
 
Hooke’s Law:   
 
 
 
 
Newton’s Second Law:   kxmaF −==  
 
 
 
 
 
 
DE of Free Undamped Motion: (Harmonic motion) 
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Mathematical Formulation 
Statement of the problem: A mass of m kilograms is attached to the end of a spring whose 
natural length is 0l .  At t=0, the mass is displaced a distance 0L meters from its equilibrium 
position and released with a velocity 0v meters/second.  We wish to determine the IVP that 
governs the resulting motion. 
 
Hook’s Law:  sF kx= −  
 
At equilibrium position:  g sF F=  
 
 
 
 
 
 
 
At time t = 0.    
 
 
 
 
 
In motion, we have the following forces acting on the mass. 
 
1. mgFg =    
 
 
2. ( )[ ]tyLkFs +−= 0 Where ( )ty is the displacement from its equilibrium position at time t. 
 
 
3. A damping force dF .  In general, the motion will be damped due, for example, to air 
 resistance, or an external damping system, such as a dashpot.  We assume that any 
 damping forces that are present are directly proportional to the velocity of the mass.   

 
dt
dycFd −=  

4. Any external driving forces, ( )tF that are present.  For example, the top of the spring or 
 the mass itself may be subjected to an external force. 
  
So the total force acting on the system will be the sum of the preceding forces.  Thus, using 
Newton’s second law, the DE governing the motion of the mass is  
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Free Oscillations of a Mechanical System 
We first consider the case when there are no external forces acting on the system, and then we 

have the following homogeneous DE.
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Case 1: Simple Harmonic Motion: There is no damping i.e. when c = 0. 
   

  
( ) ( )
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ϖ ϖ + + = ⇒ + = = ⇒ + =
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Sol: The characteristic polynomial: 2'' 0y yϖ+ =  
  
 
 ( ) ( ) ( ) ( )2 2

1 20 cos sinp i y t C t C tλ λ ϖ λ ϖ ϖ ϖ= + = ⇒ = ± ⇒ = +  
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Ex1: A mass weighing 2 pounds stretches a spring 6 inches.  At 0=t the mass is released from 

a point 8 inches below the equilibrium position with an upward velocity of sec/
3
4 ft .  

Determine the equation of free motion. 
Sol:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Convert the solution ( ) ( )0
0 cos sinvy y t tϖ ϖ

ϖ
= + into Phase – Amplitude form:  

( ) ( )cosy t A tϖ δ= −  
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Ex: Let ( ) ( ) 30';40;0'' =−==+ yyyy  
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Ex: Solve ( ) ( ) 30';10;09'' −===+ yyyy  
 a) Find the solution in phase-amplitude form; 
 b) Find the time at which the mass crosses the equilibrium position for the first time. 
 c) Find the maximum speed of the mass. 
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Ex: A mass of 1 kg stretches a spring 9.8 cm.  Let y =0 denote the equilibrium position of the  
 mass after it is attached to the spring.  Suppose that the spring acts linearly if it is not 
 stretched or compressed more than 1 m from its length before the mass is attached.  If the 
 spring stretches more than this amount, then it no longer obeys Hooke’s law (that is, the 
 spring is deformed if it stretches too much).  Ignore friction and air resistance.  Consider 
 the following questions: 
 1. Use Newton’s laws to derive a differential equation that describes the motion. 
 2. What is the period of the motion? 
 3. The spring is stretched to an initial position ( ) 00 yy = and released with zero  
  initial velocity.  For what values of 0y  will the spring not be stretch so much that  
  it deforms? 
 4. The spring is pushed from the equilibrium position with initial velocity 0v .  For  
  what values of 0v will  the spring not be damaged? 
Solution: 
 1. The gravitational force on the mass (that is, its weight) is Nmg 8.9= , which  
  exactly balances the restoring force of the spring when the mass is at rest at the  
  equilibrium position.  The mass stretches the spring by 0.098m, so the spring  
  constant is mNmNk /100098.0/8.9 == .  Friction is negligible, so the restoring  
  force of he spring equals the weight of he mass.  Therefore, 
  0100''100'' =+⇔−=−=−= yyykyFmy restoring  
 
 2. The general solution is ( ) tctcty 10sin10cos 21 += , thus the period of the motion   
  is sec10/2π . 
 
 3. We substitute the initial values, we have:  .   

   
( )
( )

1 0

2 2

0

' 0 10 0 0

y C y

y C C

= =

= = ⇒ =
( ) ( )0 cos 10y t y t⇒ =  

  Hence, the maximum displacement of the mass is 0y meters from the   
  equilibrium.  To avoid damaging the spring,  we must not stretch it more than 1 m  
  from its initial length before the mass is attached.  The mass stretches the spring  
  when it is attached; in this case, the equilibrium position 0=y corresponds to an  
  elongation of 0.098m.  Thus the spring is not damage if 0 1 0.098 0.902y m< − =  
 
 4. The spring is pushed from the equilibrium point:  ( ) ( ) 00 0; ' 0y y v= =  

  ( )
( )

( )

1

1 2 0
2 0 2

0 0
cos10 sin10

' 0 10
10

y C
y t C t C t vy C v C

= =
= + ⇒ 

= = ⇒ =

 

  Solution:  ( ) ( )0 sin 10
10
vy t t=  

  The initial conditions imply 10/;0 021 vcc == .  The maximum amplitude of the  
  spring is 10/0v m.  The spring is undamaged if ,098.0110/0 −<v that is   
  smv /02.90 <  
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Damping: 
 ( ) ( )

2

0 02 0; 0 ; ' 0d x c dx k x y y y v
dt m dt m

+ + = = =  

 ( )
2

2
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c c mkc k c c mkm mp
m m m

λ λ λ λ
− ± − − ± −

= + + = ⇒ = =  

 a) Overdamped: ⇒>⇔>− 1
4

04
2

2

km
ckmc (Two distinct real roots) 

 b) Critically damped if ⇒=⇔=− 1
4

04
2

2

km
ckmc (Repeated real root) 

 c) Underdamped if ⇒<⇔<− 1
4

04
2

2

km
ckmc (Two complex conjugate roots) 

Overdamped: When we have two distinct roots, say 1 2andλ λ , then we clearly see that the 
complement solutions of the DE, is ( ) 1 2

1 2
t ty t C e C eλ λ= +  

Ex:  A mass spring obey the DE:  ( ) ( )
2

2 5 4 0; 0 1; ' 0 1d y dy y y y
dt dt

+ + = = = . 

 a) Determine when the mass reaches its extremum and find its extreme value(s). 
 b) Does the mass cross the equilibrium position. 
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Ex: Let the motion of a linear pendulum be governed by the equation:  '' 4 ' 3 0;y y y+ + =  
 a) Suppose the pendulum initially is at the equilibrium position, that is, ( )0 0y = ,  

  and that ( ) 0' 0 0y v= ≠ . Does the pendulum ever cross the equilibrium?  Explain  
  why or why not. 
 
 
 
 
 
 
 
 
 b) Suppose ( )0 1y = .  Show that the pendulum crosses the equilibrium once if 
  30 −<v  
 
 
 
 
 
 
 
 
 
 
 
 
 
 c) Are there any initial conditions for which the pendulum crosses the equilibrium  
  position exactly twice.  Explain why or why not? 
 
 
 
 
 
 
 
 
 d) Find the solution satisfying the initial condition ( ) ( )0 00 ; ' 0y x y v= =  
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Critically Damped Motion 

( ) ( )
2

0 02 0; 0 ; ' 0d x c dx k x y y y v
dt m dt m

+ + = = =  

( )

( ) ( )

2
2 2

2
1 2

40 4 0; ,
2 2 2

c t
m

c k c c mk c cp c mk and
m m m m m

y t e C C t

λ λ λ λ λ

−

− ± −
= + + = ⇒ = ⇒ − = = − −

= +

 

 
Ex1: An 8 – pound weight stretches a spring 2 ft.  Assuming that a damping force numerically 

equal to 2 times the instantaneous velocity acts on the system, determine the equation of 
motion if the weight is released from the equilibrium position with an upward velocity of 
3 ft/sec. 
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Ex: Consider the IVP: ( ) ( )1'' ' 0; 0 1, ' 0 1
4

y y x y y+ + = = = . 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note:  The motion of a critically damped pendulum is similar to that of an Overdamped 
pendulum.  In particular. 
1. The bob does not oscillate around the equilibrium (x = 0) position; 
2. As ∞→t , the bob tends to the equilibrium position; and 
3. The bob crosses the equilibrium position at most once. 
It is difficult in practice to achieve critical damping, because the relation glmc 22 4= must be 
satisfied precisely.  Even if we assume that the frictional forces are perfectly proportional to the 
current angular velocity of the pendulum, any error in measuring the mass or the length of the 
pendulum means that we are likely to be in the Overdamped or underdamped case. 
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Underdamped: 

( ) ( )
2

0 02 0; 0 ; ' 0d x c dx k x y y y v
dt m dt m

+ + = = =  

( )

( ) ( ) ( )( )

2
2

2 2

1 2

1 4 40 ; 4 0
2 2

cos sinat

c c mkc k c c mkm mp c mk
m m m

a bi y t e C bt C bt

λ λ λ λ

λ

− ± − − ± −
= + + = ⇒ = = − <

⇒ = ± ⇒ = +

 

 
Ex: Solve ( ) ( )9 '' 30 ' 29 0; 0 1; ' 0 3y y y y y+ + = = = −  
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The Phase-Amplitude Formulation of Underdamped Solutions 
 We know that the solution for an underdamped is 
 ( ) ( ) ( )( )1 2cos sinata bi y t e C bt C btλ = ± ⇒ = +  .   

 We want to rewrite ( ) ( )cosaty t Ae bt δ= −  where δandb can be computed from the 
 initial conditions as before. 
 

• If 0≠a then the equation is not periodic.  Although the cosine function is periodic 
with period b/2π , so we  have that  

• ( ) ( ) ( )2 / 2 / 2 /2 2cos cosa t b at a b a by t Ae b t Ae e bt e y t
b b

π π ππ π δ δ+     + = + − = − =        
 

 which is not  ( ); 0y t if a ≠  
• We say that the equation with 0≠a is pseudoperiodic, because it behaves like a 

periodic function except that its amplitude is not a constant.  The pseudoperiodic is
b/2π , the period of the cosine term. 

• Equation may be regarded as a cosine function with an exponentially decaying 
amplitude when 0<a .  The term atAe is called the envelope.  The graph of atAe and 
the graph of atAe− enclose the graph of ( )y t  

• Equation allows you to determine by inspection when the mass crosses the 
equilibrium; you need only determine the time t for which δ−at is odd multiple of 

2/π  
 
 
Ex: Suppose the oscillating curve of ( ) ( )/1010 cos 3tx t e t−=  
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Ex1: Suppose a mass of 80 kg is attached to a linear spring whose spring constant is 25N/m.  If 
 the force of friction is proportional to the current velocity of the mass with a 
 proportionality constant of 40 kg/s, then the  differential equation governing the motion is 
 80 '' 40 ' 25 0y y y+ + = , the mass starts 1m below its equilibrium position with a downward 
 initial velocity of 3m/sec.  Determine the function describes the motion of the mass. 
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Ex2: A 16 – pound weight is attached to a 5 – foot – long spring.  At equilibrium the spring 
 measures 8.2 ft.  If the weight is pushed up and released from the rest at a point 2 ft above 
 the equilibrium position, find the displacements ( )y t if it is further known that the 
 surrounding medium offers assistance numerically equal to half the instantaneous 
 velocity. 
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Ex: Given a DE:   ( ) ( ) 20';10;08'4'' ===++ xxxxx  
 a) Find the solution in phase – amplitude form. 
 b) If we think of each equation as describing a linear mass-spring system, determine  
  how often the mass crosses the equilibrium position. 
 c) Find the time at which the mass first crosses the equilibrium position. 
 d) Estimate the time for which ( ) 100/1<tx  
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Oscillations with External forces: (Spring/Mass Systems:  Driven Motion) 
 
Case 1:  DE of Driven Motion without damping: 
  

 ( ) ( )
2

2
02 sin ; 0 0; ' 0 0d y y F t y y

dt
ϖ β+ = = =   Where 0F is a constant and ϖ β≠  

 
Sol: The homogeneous solution ( ) 1 2cos sinhy t c t c tϖ ϖ= + and the particular solution is  
 

( ){ }( )
( ){ }( )

{ }( )

( ) ( )
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( )

( )

( )

( )

2

2 2

2 2

2 2 2 2
0 2 2 0
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cos sin
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p
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p

y t A t B t

y t A t B t
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A A b c
t A A t B B F t FB F B

Fy t c t c t t

y c
Fy t c t

β β ϖ

β β β

β β β β

ϖ β ϖ β
γ ϖ β β ϖ β γ

ϖ β
ϖ β

ϖ ϖ β
ϖ β

βϖ ϖ
ϖ β

= +

= − +

= − −

 − = ⇒ = ≠
− + − = ⇒ 

− = ⇒ = −

⇒ = + +
−

⇒ = =

⇒ = +
−

( ) ( )
( ) ( ) ( )

0 0
2 22 2 2 2 2

0
2 2

cos ' 0 0

sin sin

F Ft x c c

Fy t t t

β ββ ϖ
ϖ γ ϖ ϖ β

ϖ β β ϖ β ϖ
ϖ ϖ β

⇒ = + = ⇒ = −
− −

⇒ = − ≠
−  

Although the above equation is not defined for ϖγ = , it is interesting to observe that it’s limiting 
value as β ϖ→ can be obtained by applying L’Hôpital’s rule.  This limiting process is 
analogous to “tuning in” the frequency of the driving force πγ 2/ to the frequency of free 
vibrations πϖ 2/ .  Intuitively, we expect that over a length of time we should be able to 
substantially increase the amplitudes of vibration.  For ϖγ = we define the solution to be. 

( ) ( )
( )

( )

( )
0

02 2
3 2

0 0 2

sin sinsin sin
lim lim

cos sin cos sinlim
2 2

d t tF t t dy t F d
d

t t t t t tF F

β ϖ γ ϖ

β ϖ

ϖ β β ϖϖ β β ϖ β
ϖ ϖ β ϖ ϖβ

β
ϖ β ϖ ϖ ϖ ϖ
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F

ϖ
ϖ

ϖ
ϖ

cos
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2

0
2
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Clearly, ( ) ∞=





 −=
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Pure Resonance: Although equation ( ) ( ) ( )0
2 2

sin sinFx t t tϖ β β ϖ
ϖ ϖ β

= −
−

 is not defined  

   for β ϖ=  
 
Ex: ( ) ( )'' 25 10cos5 ; 0 0; ' 0 1y x t y y+ = = =  
 
 
Sol: Clearly, for homogeneous part, we have ( ) 1 2cos5 sin 5hy t C t C t= + and particular 

solution 

( ) ( ) ( )( ){ }( )

( ) ( ) ( ) ( ) ( )( ){ }( )
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

cos 5 sin 5 25

' cos 5 sin 5 5 sin 5 5 cos 5 0

'' 5 sin 5 5 cos 5 5 sin 5 5 cos 5
1

25 cos 5 25 sin 5

25 25 cos 5 25 25 sin 5
10cos 5

5 5 cos 5 5 5 sin 5

1

p

p

p

y t t A t B t

y t A t B t t A t B t

y t A t B t A t B t

t A t B t

t A A t B B t
t

B B t A A t

= +

= + + − +

= − + − +  
 

+ − −  

 − + −   = = 
+ + + − −  

⇒ 0 10 1; 10 0 0B B A A= ⇒ = − = ⇒ =

 

( ) ( )
( )

( )
( ) ( )

1

1 2
2

0 0 0
1cos5 sin 5 sin 5 sin 51 5' 0 1

5
h p

y c
y t y y C t C t t t y t t t

y c

= ⇒ =
  = + = + + ⇒ = +  

= ⇒ =  
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Ex: Let’s now take a look at ( ) ( ) 00';00;6cos1125'' ===+ xxtxx  
 

- Although the initial conditions are both zero, the solution is not the zero function.  In 
contrast, if there is no forcing, then zero initial conditions imply a zero solution. 
 

- Although the oscillations are more complicated than those of the simple sine or 
cosine function, the solution is periodic with a period that is slightly larger than 6. 

 
Sol: ( ) ( ) ( ) ( ) ( ) ( )1 2sin 5 cos 5 ; cos 6 sin 6 ;h px t C t C t x t A t B t= + = +  

  

( )
( )

( )

( ) ttctctx
BBB

AAAA
ttBtAtBtA

tBtAtx
tBtAtx

p

p

6cos5cos5sin
002536

11111112536
6cos116sin6cos256sin366cos36

6sin366cos36''
6cos66sin6'

21 −+=⇒




=⇒=+−
−=⇒=−⇒=+−

⇒

=++−−

−−=

+−=

 

 
 With the initial conditions we have 

( ) ( ) ttctctxccx 6sin65sin55cos5';1010 2122 −−−==⇒=−=  
 ( ) ( ) tttxccx 6cos5cos0050' 11 −=⇒=⇒=−=  
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Ex: Interpret and solve the initial-value problem: 

 ( ) ( ) ( )
2

2

1 11.2 2 5cos 4 ; 0 , ' 0 0
5 2

d y dy y t y y
dt dt

+ + = = =  
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Ex: Solve: ( ) ( ) mxxttx
dt
dx

dt
xd

==+=++ 0';00;sin2cos4222

2

 

Where m is constant, the solution will be: ( ) ( ) ttemtx t sin2sin2 +−= −  
 
 
 
 
 
 
 
 
 
 
Ex: Let ( ) ( ) 10';10;sin102'3'' =−==++ xxtxxx  
Sol: ( ) ( )2 2

1 23 2 0 1, 2; t t
hp r x t C e C eλ λ λ − −= + + = ⇒ = − − ⇒ = +  

With initial condition we have the solution: ( ) 24 2 sin 3cos .t tx t e e t t− −= − + −  
 
Note:  
- The solution for the above solution may be regarded as the sum of a transient and a 
 steady-state function.  This is a basic characterization of the solutions of damped linear 
 oscillators with periodic forcing.  The transient function consists of those terms that tend 
 to 0 as ∞→t .  In this case, the transient function is ( ) tt

T eetx 224 −− −= and the steady-
 state function is ( ) .cos3sin tttxss −=  In general, the transient part of the solution is the 
 solution of the homogeneous solution that is of course the solution for the auxiliary 
 equation. 
- The frequency of th steady-state solution is the same as the frequency of the forcing.  In other 

words, the forcing function and the steady state are periodic with period 2π 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What if different parts of Steady – State solution has different period. 
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Let look at the function ( ) tttf 3cos48.2cos4 += .  The graph of this function as below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, let’s investigate how to find the period of this function, clearly, the period of this function 

contains two periods such as 3/2;7/58.2/2 21 πππ === TandT .  Note that the period of a 
function satisfies ( ) ( )00 tfstf =+ .  If s is a positive integer multiple of both 21 TandT the 
period of f is the least common multiple of 21 TandT .  Therefore, we seek the smallest 
positive integers m and n such that 
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