
 Section 2.4    Exact DE 
 

For the next technique it is best to consider first-order DE written in differential form:  
( ) ( ) 0,, =+ dyyxNdxyxM where M and N are given functions, assumed to be sufficiently smooth.  The 

method that we will consider is based on the idea of a differential. 
 
 
 

Def:  The differential form ( ) ( )dyyxNdxyxM ,, + is said to be exact in a rectangle R if there is a function ( )yx,φ

(we call this as a potential function) such that ( ) ( ) 0,, =+ dyyxNdxyxM and N
y

M
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=
∂
∂

=
∂
∂ φφ ; for all x,y in the 

rectangle R. 
 
 
 
 Ex: a) xNyMxdyydx ==⇒=+ ,0 is exact because if we look at  

    ( ) Mx
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xyyx ==
∂
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   b) ;cos;sin20cossin2 22 yxNyxMydyxydxx ==⇒=+  
    Consider ( ) yxyx sin, 2=φ  
 
 
Theorem: The general solution to an exact equation ( ) ( ) 0,, =+ dyyxNdxyxM is defined implicitly by  

  ( ) cyx =,φ where N
y

M
x

=
∂
∂

=
∂
∂ φφ ; and c is an arbitrary constant. 

 

Proof: Let rewrite ( ) ( ) 0,, =+ dyyxNdxyxM as ( ) ( ) 0,, =+
dx
dyyxNyxM being an exact DE, we can replace 

N
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∂
∂
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∂
∂ φφ ; into the equation such as ( ) ( ) cyxyx
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d
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∂
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∂
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Remarks:  
1. The potential function φ is a function of two variables x and y, and we interpret the relationship ( ) cyx =,φ  
 as defining y implicitly as a function of x.  The preceding theorem states that this relationship defines the general 

solution to the DE for which φ  is a potential function. 
 
2. Geometrically, the theorem says that the solution curves of an exact DE are the family of curves ( ) cyx =,φ .  

These are called the level curves of the function ( )yx,φ . 
 
 
 
 
 
 
 
 



 
Now, we are ready to solve exact DE.  The questions are of course: 
 
 a) How can we tell whether a given DE is exact? 
 b) If it’s an exact DE, how do we find a potential function? 
 
Theorem: (Test for Exactness):  Let M, N and their first partial derivatives xy NM  and be continuous in a 

(simply connected) region R of xy-plane.  Then the DE ( ) ( ) 0,, =+ dyyxNdxyxM is exact for all x,y in R if and 

only if 
x
N

y
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∂
∂

=
∂
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Ex: Determine whether the given DE is exact.   
 a) ( ) ( ) 02sec2 22 =++− dyyxdxxxy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b) ( )[ ] ( ) 0/ln1 =++ dyyxdxxy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 c) ( ) 0322 =+− dyyxyydxx  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Method for solving exact equations: 

 a) If ( ) ( ) 0,, =+ dyyxNdxyxM is exact, then let M
x
=

∂
∂φ .  Integrate this last equation with respect to x to get. 

 ( ) ( ) ( )ygdxyxMyx += ∫ ,,φ   (*) 
 
 
b) To determine ( )yg , take the partial derivative with respect to y of both sides of equation (*) and substitute N 

 for .
y∂
∂φ   We can now solve for ( )yg '  

 
 
c) Integrate ( )yg ' to obtain ( )yg up to a numerical constant.  Substituting ( )yg into equation (*) to get ( )yx,φ  
 
 
d) The solution to ( ) ( ) 0,, =+ dyyxNdxyxM is given implicitly by ( ) cyx =,φ  

 
 
Ex:  Solve the following DE: 
 a) ( ) ( ) 02sec2 22 =++− dyyxdxxxy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
b) ( ) 0cos2 2 =++ dyyexdxxe yy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) ( ) ( )[ ] ( )[ ] 02cos2cossin 2 =++++ dyyxyxdxxxyxyxy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Now we develop another technique to handle those DE that are almost exact, but not quite. 
Integrating Factors for exact DE 
 
Def: A nonzero function ( )yxI , is called an integrating factor for ( ) ( ) 0,, =+ dyyxNdxyxM if the DE 
  ( ) ( ) ( ) ( ) 0,,,, =+ dyyxNyxIdxyxMyxI is exact. 
 
Ex:  Show that yxI 2= is an integrating factor for the DE ( ) ( ) 02353 322 =+++ dyxxydxyxy  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Theorem: Consider the DE ( ) ( ) 0,, =+ dyyxNdxyxM . 
1. There exists an integrating factor that depends only on x if and only if ( ) ( )xfNNM xy =− / a function of x only.  

 In such a case, an integrating factor is ( ) ( )∫=
dxxf

exI  
 
2. There exists an integrating factor that depends only on y if and only if ( ) ( )ygMNM xy =− / , a function of y only.  

 In such a case, an integrating factor is ( ) ( )∫=
− dyyf

eyI  

Proof: We will prove only (1).  Suppose first that ( ) ( )∫=
dxxf

exI is an integrating factor of ( ) ( ) 0,, =+ dyyxNdxyxM .  

0=
∂
∂
y
I .  So from the previous theorem, we have I
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1 .  Since, by assumption, I is a function of x only, it follows that the left-hand 

side of this expression depends only on x and hence also the right hand side.   

Conversely, suppose that ( ) ( )xfNNM xy =− / , a function of x only.  Then, dividing I
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N, it follows that I is an integrating factor for ( ) ( ) 0,, =+ dyyxNdxyxM if and only if it is a solution to 
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 Ex: Solve ( ) 0,02 2 >=+− xxydydxyx  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b) ( ) ( )23 22 2 1 1 0xy x y dx x dy+ − + + =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


