Section 2.4

Exact DE

For the next technique it is best to consider first-order DE written in differential form:
$M(x, y) d x+N(x, y) d y=0$ where M and N are given functions, assumed to be sufficiently smooth. The method that we will consider is based on the idea of a differential.

Def: The differential form $M(x, y) d x+N(x, y) d y$ is said to be exact in a rectangle R if there is a function $\phi(x, y)$ (we call this as a potential function) such that $M(x, y) d x+N(x, y) d y=0$ and $\frac{\partial \phi}{\partial x}=M ; \frac{\partial \phi}{\partial y}=N$ for all x, y in the rectangle R .

Ex: \quad a) $\quad y d x+x d y=0 \Rightarrow M=y, N=x$ is exact because if we look at

$$
\phi(x, y)=x y \Rightarrow \frac{\partial \phi}{\partial x}=y=N ; \frac{\partial \phi}{\partial y}=x=M
$$

b) $\quad 2 x \sin y d x+x^{2} \cos y d y=0 \Rightarrow M=2 x \sin y ; N=x^{2} \cos y$;

Consider $\phi(x, y)=x^{2} \sin y$

Theorem: \quad The general solution to an exact equation $M(x, y) d x+N(x, y) d y=0$ is defined implicitly by $\phi(x, y)=c$ where $\frac{\partial \phi}{\partial x}=M ; \frac{\partial \phi}{\partial y}=N$ and c is an arbitrary constant.

Proof: Let rewrite $M(x, y) d x+N(x, y) d y=0$ as $M(x, y)+N(x, y) \frac{d y}{d x}=0$ being an exact DE, we can replace $\frac{\partial \phi}{\partial x}=M ; \frac{\partial \phi}{\partial y}=N$ into the equation such as $\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \Rightarrow \frac{d}{d x} \phi(x, y)=0 \Rightarrow \phi(x, y)=c$

Remarks:

1. The potential function ϕ is a function of two variables x and y , and we interpret the relationship $\phi(x, y)=c$ as defining \boldsymbol{y} implicitly as a function of \boldsymbol{x}. The preceding theorem states that this relationship defines the general solution to the DE for which ϕ is a potential function.
2. Geometrically, the theorem says that the solution curves of an exact DE are the family of curves $\phi(x, y)=c$. These are called the level curves of the function $\phi(x, y)$.

Now, we are ready to solve exact DE. The questions are of course:
a) How can we tell whether a given DE is exact?
b) If it's an exact DE , how do we find a potential function?

Theorem: (Test for Exactness): Let M, N and their first partial derivatives M_{y} and N_{x} be continuous in a (simply connected) region R of xy-plane. Then the $\mathrm{DE} M(x, y) d x+N(x, y) d y=0$ is exact for all x, y in R if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
$\underline{E x}$: Determine whether the given DE is exact.
a) $\left(2 x y-\sec ^{2} x\right) d x+\left(x^{2}+2 y\right) d y=0$
b) $[1+\ln (x y)] d x+(x / y) d y=0$
c) $x^{2} y d x-\left(x y^{2}+y^{3}\right) d y=0$

Method for solving exact equations:

a) If $M(x, y) d x+N(x, y) d y=0$ is exact, then let $\frac{\partial \phi}{\partial x}=M$. Integrate this last equation with respect to x to get. $\phi(x, y)=\int M(x, y) d x+g(y)$
b) To determine $g(y)$, take the partial derivative with respect to y of both sides of equation $\left(^{*}\right)$ and substitute N for $\frac{\partial \phi}{\partial y}$. We can now solve for $g^{\prime}(y)$
c) Integrate $g^{\prime}(y)$ to obtain $g(y)$ up to a numerical constant. Substituting $g(y)$ into equation $\left(^{*}\right)$ to get $\phi(x, y)$
d) The solution to $M(x, y) d x+N(x, y) d y=0$ is given implicitly by $\phi(x, y)=c$

Ex: \quad Solve the following DE:
a) $\left(2 x y-\sec ^{2} x\right) d x+\left(x^{2}+2 y\right) d y=0$
b) $2 x e^{y} d x+\left(x^{2} e^{y}+\cos y\right) d y=0$
c) $[\sin (x y)+x y \cos (x y)+2 x] d x+\left[x^{2} \cos (x y)+2 y\right] d y=0$

Now we develop another technique to handle those DE that are almost exact, but not quite.

Integrating Factors for exact DE

Def: A nonzero function $I(x, y)$ is called an integrating factor for $M(x, y) d x+N(x, y) d y=0$ if the DE $I(x, y) M(x, y) d x+I(x, y) N(x, y) d y=0$ is exact.

Ex: \quad Show that $I=x^{2} y$ is an integrating factor for the $\mathrm{DE}\left(3 y^{2}+5 x^{2} y\right) d x+\left(3 x y+2 x^{3}\right) d y=0$

Theorem: \quad Consider the $\operatorname{DE} M(x, y) d x+N(x, y) d y=0$.

1. There exists an integrating factor that depends only on x if and only if $\left(M_{y}-N_{x}\right) / N=f(x)$ a function of x only. In such a case, an integrating factor is $I(x)=e^{\int f(x) d x}$
2. There exists an integrating factor that depends only on y if and only if $\left(M_{y}-N_{x}\right) / M=g(y)$, a function of y only. In such a case, an integrating factor is $I(y)=e^{-\int f(y) d y}$
Proof: We will prove only (1). Suppose first that $I(x)=e^{\int f(x) d x}$ is an integrating factor of $M(x, y) d x+N(x, y) d y=0$. $\frac{\partial I}{\partial y}=0$. So from the previous theorem, we have $N \frac{\partial I}{\partial x}-M \frac{\partial I}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) I$, we have $I(x)=e^{\int f(x) d x}$ is a solution to $\frac{d I}{d x} N=\left(M_{y}-N_{x}\right) I \Rightarrow \frac{1}{I} \frac{d I}{d x}=\frac{M_{y}-N_{x}}{N}$. Since, by assumption, I is a function of x only, it follows that the left-hand side of this expression depends only on x and hence also the right hand side.
Conversely, suppose that $\left(M_{y}-N_{x}\right) / N=f(x)$, a function of x only. Then, dividing $N \frac{\partial I}{\partial x}-M \frac{\partial I}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) I$ by N , it follows that I is an integrating factor for $M(x, y) d x+N(x, y) d y=0$ if and only if it is a solution to $\frac{\partial I}{\partial x}-\frac{M}{N} \frac{\partial I}{\partial y}=\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \frac{I}{N}=I f(x) \Leftarrow$ we want to show that this equation must have a solution I which depends only on x. We assume that $I=I(x) \Rightarrow \frac{\partial I}{\partial y}=0 \Rightarrow \frac{\partial I}{\partial x}=I f(x) \Leftrightarrow \frac{d I}{d x}=I f(x) \Leftrightarrow \frac{d I}{f(x)}=I d x \Leftrightarrow I(x)=e^{\int f(x) d x}$
$\underline{\boldsymbol{E x}}:$ Solve $\left(2 x-y^{2}\right) d x+x y d y=0, x>0$
b) $\left(2 x y+2 x^{3} y-1\right) d x+\left(1+x^{2}\right)^{2} d y=0$
