Def: A function fis called piecewise continuous on the interval [a,b] if we can divide $[\mathrm{a}, \mathrm{b}]$ into a finite number of subintervals in such a manner that 1. f is continuous on each subinterval, and
2. f approaches a finite limit as the endpoints of each subinterval are approached from within.

Note: If f is piecewise continuous on every interval of the form [0,b], where b is a constant, then we say that f is piecewise continuous on $[0, \infty)$

Def: A function f is said to be of exponential order if there exist constants M and α such that $|f(t)|<M e^{\alpha t}$ for all $t>0$

Ex: $\quad f(t)=e^{5 t} \sin 2 t$, then clearly $|f(t)|=\left|e^{5 t} \sin 2 t\right| \leq e^{5 t}$ for all t , here we choose $M=1 ; \alpha=5$ However, if we look at $f(t)=e^{t^{2}}$ is NOT exponential order?

Because: $\quad \lim _{t \rightarrow \infty} \frac{e^{t^{2}}}{e^{\alpha t}}=\lim _{t \rightarrow \infty} e^{t(t-\alpha)}=\infty$ for any α. Consequently, $e^{t^{2}}$ grows faster than $e^{\alpha t}$ for every choice of α

Lemma: (The comparison test for improper integrals):
Suppose that $0 \leq G(t) \leq H(t)$ for $t \in[0, \infty)$.
If $\int_{0}^{\infty} H(t) d t$ converges, then so do does $\int_{0}^{\infty} G(t) d t$
Note: Let $E(0, \infty)$ denote the set of all functions that are both piecewise continuous on $[0, \infty)$ and of exponential order. Which is a subspace of the vector space of all functions defined on $[0, \infty)$.

Theorem: If $f(x) \in E(0, \infty)$, then there exists a constant α such that $L[f]=\int_{0}^{\infty} e^{-s t} f(t) d t$ exists for all $s>\alpha$.

Proof: \quad Since f is piecewise continuous on $[0, \infty), e^{-s t} f(t)$ is integrable over any finite interval. Further, since $f(x) \in E(0, \infty)$, there exist constants M and α such that $|f(t)| \leq M e^{\alpha t}$ for all $t>0$. We now use the comparison test for integrals to establish that the improper integral defining the Laplace transform converges.
Let

$$
F(t)=\left|e^{-s t} f(t)\right| \text { Then } F(t)=e^{-s t}|f(t)| \leq M e^{-s t} e^{\alpha t}=M e^{(\alpha-s) t}
$$

But for $s>\alpha \Rightarrow \int_{0}^{\infty} M e^{(\alpha-s) t} d t=\lim _{N \rightarrow \infty} \int_{0}^{N} M e^{(\alpha-s) t} d t=\frac{M}{s-\alpha}$
Applying the comparison test for improper integrals with $F(t)$ as just defined as $G(t)=e^{(\alpha-s) t}$, it follows that $\int_{0}^{\infty}\left|e^{s t} f(t)\right| d t$ converges for $s>\alpha$ and hence $\int_{0}^{\infty} e^{-s t} f(t) d t$ converse as well. Thus, we have shown that $L[f]$ exists for $s>\alpha$, as required.

The inverse Laplace transform:

Let V denote the subspace of $E(0, \infty)$ consisting of all continuous functions of exponential order.
We have seen in the previous section that the Laplace transform satisfies

$$
L[f+g]=L[f]+L[g] \text { and } L[c f]=c L[f] .
$$

Consequently, L defines a linear transformation of V onto Rng(L). Further, it can be shown that L is also one-to-one, and therefore, it has inverse transformation L^{-1}.

Def: The linear transformation $L^{-1}: \operatorname{Rng}(F) \rightarrow V$ denoted by $L^{-1}[F](t)=f(t) \Leftrightarrow L[f](s)=F(s)$ is called the Inverse Laplace Transforms.

Note: We emphasize the fact that L^{-1} is a linear transformation, so that $L^{-1}(F+G)=L^{-1}(F)+L^{-1}(G)$ and $\quad L^{-1}(c F)=c L^{-1}(F)$

So far, we have:

$$
f(t)=1 \Rightarrow
$$

$$
f(t)=t^{n} \Rightarrow
$$

$$
f(t)=e^{a t} \Rightarrow
$$

$$
f(t)=\sin (b t) \Rightarrow
$$

$$
f(t)=\cos (b t) \Rightarrow
$$

$$
f(t)=\sinh (b t) \Rightarrow
$$

$$
f(t)=\cosh (b t) \Rightarrow
$$

$\underline{\boldsymbol{E x}}$: Find the inverse Laplace Transform $L^{-1}[F](t)$ of the following:
a) $\quad F(s)=\frac{3}{s^{3}} \Rightarrow$
b) $\quad F(s)=\frac{2}{s+4}$
c) $\quad F(s)=\frac{-2 s+6}{s^{2}+4}$
d) $\quad F(s)=\frac{3 s+2}{s^{2}-3 s+2}$
e) $\quad F(s)=\frac{7 s^{3}+s^{2}+5}{3 s^{4}+5 s^{2}}$
f) $\quad F(s)=\frac{4 s^{2}+7 s-62}{(s-4)(s+2)(s-3)}$
g) $\quad F(s)=\frac{13 s^{2}-8 s-5}{\left(s^{2}+3\right)(3 s-1)}$
h) $\quad F(s)=\frac{8-3 s-5 s^{2}}{(2 s+1)\left(3 s^{2}+2\right)}$

Theorem: \quad Suppose that f is of exponential order on $[0, \infty)$ and that f^{\prime} 'exists and is piecewise continuous on $[0, \infty)$. Then $L\left[f^{\prime}\right]$ exists and is given by $L\left[f^{\prime}\right]=s L[f]-f(0)$
Proof:

Theorem: If $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous on $[0, \infty)$ and are of exponential order and if $f^{(n)}(x)$ is piecewise continuous on $[0, \infty)$, then

$$
L\left\{f^{(n)}(x)\right\}=s^{n} L(f(t))-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)
$$

Solving Linear ODEs: It is apparent from the general result given above that $L\left(\frac{d^{n} y}{d t^{n}}\right)$ depends on $F(s)=L(y(t))$ and the $\mathrm{n}-1$ derivatives of $\mathrm{y}(\mathrm{t})$ evaluated at $\mathrm{t}=0$. So, for the IVP which the DE has constant coefficients are ideally suited for Laplace. We have this
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{0} y=g(x)$ with $y(0)=y_{0}, y^{\prime}(0)=y_{1}, \ldots, y^{(n-1)}(0)=y_{n-1}$ where $a_{i}=$ cons $\tan t$ for all i. By linearity property of the Laplace transform of this linear combination is a liner combination of $a_{n} L\left(\frac{d^{n} y}{d x^{n}}\right)+a_{n-1} L\left(\frac{d^{n-1} y}{d x^{n-1}}\right)+\ldots+a_{0} L(y)=L(g(x))$ So, we have:
$a_{n}\left[s^{n} F(s)-s^{n-1} y(0)-\ldots-y^{n-1}(0)\right]+a_{n-1}\left[s^{n-1} F(s)-s^{n-2} y(0)-\ldots-y^{(n-2)}(0)\right]+\ldots+a_{0} F(s)=G(s)$
Where $L(y(t))=F(s)$ and $L(g(t))=G(s)$.

In other words, the Laplace transform of a linear differential equation with constant coefficients becomes an algebraic equation in $F(s)$. If we solve the general transformed equation for the symbol $Y(s)$, we first obtain

$$
P(s) F(s)=Q(s)+G(s) \Rightarrow F(s)=\frac{Q(s)}{P(s)}+\frac{G(s)}{P(s)} \text { where } P(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0} \text { and } Q(s)
$$

is a polynomial in s of degree less than or equal to $\mathrm{n}-1$ consisting of the various products of the coefficients $a_{i}, i=1,2, \ldots, n$ and the prescribed initial conditions $y_{0}, y_{1}, \ldots, y_{n-1}$ and $G(s)$ is the Laplace transform of $g(t)$. Finally, the solution $y(t)=L^{-1}(F(s))$

Ex: Use the Laplace transform to solve the initial-value problem
a) $\frac{d y}{d t}+3 y=13 \sin (2 t), y(0)=6$
b) $\quad y^{\prime \prime}-3 y^{\prime}+2 y=e^{-4 t}, y(0)=1, y^{\prime}(0)=5$
c) $\quad y^{\prime \prime}-3 y^{\prime}+2 y=3 \cos t+\sin t ; y(0)=1 ; y^{\prime}(0)=1$

