Def: A first - order DE of the form: $y^{\prime}=\frac{d y}{d x}=g(x) h(y)$ is said to be separable

Ex: Solve the following DE:
a) $\frac{d y}{d x}=\frac{e^{2 x-y+1}}{e^{2 y-x-3}}$
b) $\frac{d P}{d t}=p^{2}-p-20$
c) $y-x \frac{d y}{d x}=3-2 x^{2} \frac{d y}{d x}$
d) $\frac{d y}{d x}=\frac{x^{2} y-32}{16-x^{2}}+2$
e) $\frac{d y}{d x}=\frac{x \tan ^{-1} x}{y} ; y(0)=3$

Ex: A tank contains 600 gal of water in which there is dissolved 4 lbs of salt. A solution containing $1 / 2 \mathrm{lb}$ of salt flows into the tank at the rate of $5 \mathrm{gal} / \mathrm{min}$, and the well-stirred mixture flows out at the same rate of $5 \mathrm{gal} / \mathrm{min}$. Determine the concentration of salt in the tank after 1 hour.

Ex: Using differential equation compute the monthly payment of a mortgage loan of $\$ 650,000$ at a fixed rate of 5.5% per year compounded continuous for 30 yrs .

Section 2.2
First-Order Linear DE

Def: A DE that can be written in the form $a(x) \frac{d y}{d x}+b(x) y=r(x)$ where $a(x), b(x)$ and $r(x)$ are functions defined on an interval (α, β) is called a first-order linear DE.

If $a(x) \neq 0 \Rightarrow \frac{d y}{d x}+p(x) y=q(x)$
$\underline{\boldsymbol{E x}}: \quad$ Solve the following equations:
a) $\frac{1}{x} \frac{d y}{d x}-\frac{2 y}{x^{2}}=x \cos x ; \quad y\left(\frac{\pi}{2}\right)=3$
b) $\quad \cos x \frac{d y}{d x}+y \sin x=2 x \cos ^{2} x ; \quad y\left(\frac{\pi}{4}\right)=\frac{-15 \sqrt{2} \pi^{2}}{32}$
c) $\quad \frac{d y}{d x}+\frac{3 x}{3 x^{2}+1} y=\frac{x e^{4 x^{2}-1}}{\sqrt{3 x^{2}+1}}$
d) $\quad x \frac{d y}{d x}-2 y=x^{3} \cos (5 x)$
e) $\quad x \frac{d y}{d x}+3 y=\frac{1}{x^{2}} \sin (3 x)$
f) $\quad y^{\prime}-y=f(x), y(0)=0$ where $f(x)=\left\{\begin{array}{l}1, \quad \text { if } \mathrm{x}<1 \\ 2-\mathrm{x}, \quad \text { if } \mathrm{x} \geq 1\end{array}\right.$
g) $\quad \frac{d y}{d x}-\frac{3 x}{3 x^{2}+1} y=\frac{x \sqrt{3 x^{2}+1}}{e^{x^{2}}}$
h) $\quad \frac{d y}{d x}-y=f(x)$; where $f(x)=\left\{\begin{array}{l}1 ; \text { if } x<1 \\ 2-x ; \text { if } x \geq 1\end{array} ; y(0)=0\right.$

