
Chapter 6   Series solutions of Linear DE 
 
6.1  Review power series:    
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Power series of representation of basic functions: 
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Note:  For each power series, there exists an interval of x where the power series is convergence: 
 
Def:  A function f is said to be analytic at a point x = c if it can be represented by a power series 
 in x c− with either a positive or an infinite radius of convergence. 
 
How to manipulate power series:  Shifting the series index. 
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Ex: Assume that the coefficients in the expansion of ( )
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6.2  Solutions About Ordinary Points 
 

Given a DE:  
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Def: A point 0x x= is said to be an ordinary point of a DE in standard form where P(x) and 
 Q(x) are analytic at 0x x= .  A point that is not an ordinary point of the DE, is said to be a 
 singular point of the DE. 
 

Ex: Solve '' 2 ' 4 0y xy y− − = by the power series:  
0

n
n

n
y a x

∞

=

=∑  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ex: Solve 2 5

0
'' ' 3 0 n

n
n

y x y xy by y a x up to x
∞

=

+ − = =∑  

Sol:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Ex: Determine the term up to 5x of the solution 
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