6.1 Review power series:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \\
& \sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{n 3}(x-c)^{3}+\ldots
\end{aligned}
$$

Power series of representation of basic functions:
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} ; \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} ; \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n} ; \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} ; e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

Note: For each power series, there exists an interval of x where the power series is convergence:

Def: A function f is said to be analytic at a point $\mathrm{x}=\mathrm{c}$ if it can be represented by a power series in $x-c$ with either a positive or an infinite radius of convergence.

How to manipulate power series: Shifting the series index.

Ex: $\quad \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n+1}$
$\underline{\text { Ex: }} \quad$ Assume that the coefficients in the expansion of $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$, satisfy the equation

$$
\sum_{n=1}^{\infty} n a_{n} x^{n}-\sum_{k=0}^{\infty} a_{n} x^{n+1}=0
$$

6.2 Solutions About Ordinary Points

Given a DE: $\begin{aligned} & a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0 ; a_{2}(x) \neq 0 \\ & y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 ; \text { Standard form }\end{aligned}$

Def: A point $x=x_{0}$ is said to be an ordinary point of a DE in standard form where $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are analytic at $x=x_{0}$. A point that is not an ordinary point of the DE , is said to be a singular point of the DE .

Ex: Solve $y^{\prime \prime}-2 x y^{\prime}-4 y=0$ by the power series: $y=\sum_{n=0}^{\infty} a_{n} x^{n}$

Ex: Solve $y^{\prime \prime}+x^{2} y^{\prime}-3 x y=0$ by $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ up to x^{5}
Sol:

Ex: Determine the term up to x^{5} of the solution $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ for $y^{\prime \prime}+\left(2-4 x^{2}\right) y^{\prime}-8 x y=0$ Sol:

