Chapter Eight

Systems of Differential Equations

First - Order Linear Systems

Def:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=a_{11}(t) x_{1}(t)+a_{12}(t) x_{2}(t)+\ldots+a_{1 n}(t) x_{n}(t)+F_{1}(t) \\
& \frac{d x_{2}}{d t}=a_{21}(t) x_{1}(t)+a_{22}(t) x_{2}(t)+\ldots+a_{1 n}(t) x_{n}(t)+F_{2}(t) \\
& \ldots \\
& \frac{d x_{n}}{d t}=a_{n 1}(t) x_{1}(t)+a_{12}(t) x_{2}(t)+\ldots+a_{1 n}(t) x_{n}(t)+F_{n}(t)
\end{aligned}
$$

We can rewrite it as vectors: $\overrightarrow{x^{\prime}(t)}=A(t) \overrightarrow{x(t)}+\overrightarrow{F(t)}$, where

$$
\begin{gathered}
\overline{x^{\prime}(t)}=A(t) \overrightarrow{x(t)}+\overrightarrow{F(t)} \\
{\left[\begin{array}{l}
x_{1}{ }^{\prime}(t) \\
x_{2}{ }^{\prime}(t) \\
\ldots \\
x_{3}{ }^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \ldots & a_{1 n}(t) \\
a_{21}(t) & a_{22}(t) & \ldots & a_{2 n}(t) \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1}(t) & a_{n 2}(t) & \ldots & a_{n n}(t)
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
\ldots \\
x_{3}(t)
\end{array}\right]+\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t) \\
\ldots \\
F_{n}(t)
\end{array}\right]} \\
\\
\text { Solution: of a system }\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
\ldots \\
x_{n}(t)
\end{array}\right] \\
\text { Ex: }\left\{\begin{array}{l}
\frac{d x}{d t}=5 x+3 y+e^{2 t} \quad=\left[\begin{array}{l}
d x / d t \\
d y / d t
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
e^{2 t} \\
5 \cos (2 t)
\end{array}\right]
\end{array}\right.
\end{gathered}
$$

Theorem: Let the entries of the matrices $\mathrm{A}(\mathrm{t})$ ad $\mathrm{F}(\mathrm{t})$ be functions continuous on a common interval I that contains the point t_{0}. Then there exists a unique solution of the initial - value on the interval.

Theorem: Let $\overrightarrow{x_{1}(t)}, \overrightarrow{x_{2}(t)}, \overrightarrow{x_{3}(t)}, \ldots, \overrightarrow{x_{n}(t)}$ be a set of a solution vectors of the homogenous system on an interval I. Then the linear combination $\overrightarrow{x(t)}=c_{1} \overrightarrow{x_{1}(t)}+c_{2} \overrightarrow{x_{2}(t)}+c_{3} \overrightarrow{x_{3}(t)}+\ldots+c_{n} \overrightarrow{x_{n}(t)}$
for $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants is also a solution of the system on the interval I .

Definition:

Let $\overrightarrow{x_{1}(t)}, \overrightarrow{x_{2}(t)}, \overrightarrow{x_{3}(t)}, \ldots, \overrightarrow{x_{n}(t)}$ be vectors in $V_{n}(I)$. Then the Wronskian of these vectors function denoted: $W\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\operatorname{det}\left(\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right)$

Note: The Wronskian of these vectors is defined as column vectors function in $V_{n}(I)$, whereas the Wronskian previously introduced refers to functions in $C^{n}(I)$

Theorem: \quad The set $\overrightarrow{x_{1}(t)}, \overrightarrow{x_{2}(t)}, \overrightarrow{x_{3}(t)}, \ldots, \overrightarrow{x_{n}(t)}$ of vectors in $V_{n}(I)$ is linearly independent if the Wronskian is nonzero at some point in I.

Ex: Determine if $\overrightarrow{x_{1}(t)}=\left[\begin{array}{l}e^{t} \\ 2 e^{t}\end{array}\right] ; \overrightarrow{x_{2}(t)}=\left[\begin{array}{l}3 \sin t \\ \cos t\end{array}\right]$ is linearly independent.
$W\left[x_{1}, x_{2}\right]=\operatorname{det}\left[\begin{array}{ll}e^{t} & 3 \sin t \\ 2 e^{t} & \cos t\end{array}\right]=e^{t} \cos t-6 e^{t} \sin t=e^{t}(\cos t-6 \sin t)$
Theorem: Given $\frac{\overrightarrow{d x}}{d t}=\overrightarrow{x(t)}+\overrightarrow{F(t)}$. The homogenous solution

$$
\begin{aligned}
\overrightarrow{x_{h}(t)}= & c_{1} \overrightarrow{x_{1}(t)}+c_{2} \overrightarrow{x_{2}(t)}+c_{3} \overrightarrow{x_{3}(t)}+\ldots+c_{n} \overrightarrow{x_{n}(t)} \text { be solution of } \\
& \frac{\overrightarrow{d x}}{d t}=A \overrightarrow{x(t)} \Rightarrow \frac{\overrightarrow{d x_{h}}}{d t}=A \overrightarrow{x_{h}(t)}
\end{aligned}
$$

And particular solution $\overrightarrow{x_{p}(t)} \Rightarrow \frac{\overrightarrow{d x_{p}}}{d t}=A \overrightarrow{x_{p}(t)}+\overrightarrow{F(t)}$.
Then the general solutions of the system are

$$
\overrightarrow{x(t)}=\overrightarrow{x_{h}(t)}+\overrightarrow{x_{p}(t)}=\overrightarrow{x_{h}(t)}=c_{1} \overrightarrow{x_{1}(t)}+c_{2} \overrightarrow{x_{2}(t)}+c_{3} \overrightarrow{x_{3}(t)}+\ldots+c_{n} \overrightarrow{x_{n}(t)}+\overrightarrow{x_{p}(t)}
$$

8.2 Homogeneous Linear Systems $\quad \frac{\overrightarrow{d x}}{d t}=A_{n \times n} \vec{x}$

Def: Let A be an $n \times n$ matrix. Any values of λ for which $\overrightarrow{A v}=\lambda v$ has nontrivial solutions are called eigenvalues of A . The corresponding non-zero vectors v are called eigenvectors of A .

Ex: Consider the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. Then we have that
$A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 1\end{array}\right]=\lambda v \Rightarrow\left\{\begin{array}{l}\text { Eigenvalue } \lambda=3 \\ \text { Eigenvector } \vec{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]\end{array}\right.$
$A\left[\begin{array}{r}1 \\ -1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{r}1 \\ -1\end{array}\right]=\left[\begin{array}{r}-1 \\ 1\end{array}\right]=-\left[\begin{array}{r}1 \\ -1\end{array}\right]=\lambda v \Rightarrow\left\{\begin{array}{l}\text { Eigenvalue } \lambda=-1 \\ \text { Eigenvector } \vec{v}=\left[\begin{array}{r}1 \\ -1\end{array}\right]\end{array}\right.$
How to find Eigenvalues and Eigenvectors of an n by n matrix A .

$$
A \vec{v}=\lambda \vec{v} \Rightarrow A \vec{v}-\lambda \vec{v}=\overrightarrow{0} \Rightarrow(A-\lambda I) \vec{v}=\overrightarrow{0}
$$

Procedure:

1. Find all scalars λ such that $\operatorname{det}(A-\lambda I)=0$. These are the Eigenvalues.
2. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the distinct eigenvalues obtained from (1) then solve the k systems of linear equations
$\left(A-\lambda_{i} I\right) v_{i}=0$; for $i=, 1,2, \ldots, n$ to find all eigenvectors v_{i} corresponds to each eigenvalue.

Note: The equation $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial.

Ex: Find all Eigenvalues and Eigenvectors of $A=\left[\begin{array}{ll}5 & -4 \\ 8 & -7\end{array}\right]$

Ex: Find the Eigenvalues and Eigenvector of the following matrices
a) $A=\left[\begin{array}{ll}2 & 0 \\ 2 & 0\end{array}\right]$
b) $\quad A=\left[\begin{array}{rr}-1 & -1 \\ 1 & -3\end{array}\right]$
c) $A=\left[\begin{array}{cc}-1 / 4 & 2 \\ -2 & -1 / 4\end{array}\right]$

Theorem: Let A be an $n \times n$ matrix with real elements. If λ is a complex eigenvalue of A with corresponding eigenvector v , then $\bar{\lambda}$ is an eigenvalue of A with corresponding eigenvector \bar{v}.

$$
\text { d) } \quad A=\left[\begin{array}{cc}
-2 & -6 \\
3 & 4
\end{array}\right]
$$

Ex: Solve:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+2 y \\
\frac{d y}{d t}=2 x+y
\end{array} ; \text { verify }\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=C_{1} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{-t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right. \text { is a solution: }
$$

Homogeneous Constant Coefficient VDE:

 Non-Defective Coefficient MatrixTheorem: Let $\frac{\overrightarrow{d x}}{d t}=A \vec{x}$ and $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ be n distinct real eigenvalues of the coefficient matrix A of the homogeneous system and let $\overrightarrow{v_{1}} ; \overrightarrow{v_{2}} ; \overrightarrow{v_{3}} ; \ldots, \overrightarrow{v_{n}}$. Then the general solution of the system are $\overrightarrow{x(t)}=C_{1} e^{\lambda_{1} t} \overrightarrow{v_{1}}+C_{2} e^{\lambda_{2} t} \overrightarrow{v_{2}}+\ldots+C_{n} e^{\lambda_{n} t} \overrightarrow{v_{n}}$

We now consider the VDE: $\quad \overline{x^{\prime}(t)}=A \overline{x(t)}$
Ex: Solve the following:
a) $\left\{\begin{array}{l}x_{1}{ }^{\prime}=2 x_{1}-3 x_{2} \\ x_{2}{ }^{\prime}=-x_{1}+4 x_{2}\end{array}\right.$
b) $\left\{\begin{array}{l}x_{1}{ }^{\prime}=x_{1}+2 x_{2} \\ x_{2}{ }^{\prime}=2 x_{1}-2 x_{2}\end{array}\right.$
c) $\left\{\begin{array}{l}x_{1}{ }^{\prime}=2 x_{1}+2 x_{2} \\ x_{2}{ }^{\prime}=2 x_{1}-x_{2}\end{array}\right.$
d) $\quad \overrightarrow{x^{\prime}(t)}=A \overrightarrow{x(t)}$ where $A=\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 4 & -3 \\ -2 & 2 & -1\end{array}\right]$

Complex Eigenvalues:

Theorem: Let $u(t)$ and $v(t)$ be real-valued vector functions. If $w_{1}(t)=u(t)+i v(t)$ and $w_{2}(t)=u(t)-i v(t)$ are complex conjugate solutions to $x^{\prime}=A x$, then $x_{1}(t)=u(t)$ and $x_{2}(t)=v(t)$ are themselves real-valued solutions to $x^{\prime}=A x$

Theorem: Let A be a real 2 by 2 matrix with complex conjugate eigenvalues. Let $\lambda=a+b i$ be one of the eigenvalues, and let v be a corresponding eigenvector. The general solution of the system $x^{\prime}=A x$ is $x(t)=c_{1} \operatorname{Re}\left(e^{\lambda t} v\right)+c_{2} \operatorname{Im}\left(e^{\lambda t} v\right)$ where the constants c_{1} and c_{2} are real if the initial condition is real.

Ex: Solve $\left\{\begin{array}{l}x_{1}{ }^{\prime}=-x_{1}+2 x_{2} \\ x_{2}{ }^{\prime}=-2 x_{1}-x_{2}\end{array}\right.$ with initial value $\overrightarrow{x(0)}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Sol: $\quad \overrightarrow{x^{\prime}(t)}=A \overrightarrow{x(t)}=\left[\begin{array}{l}x_{1}{ }^{\prime}(t) \\ x_{2}{ }^{\prime}(t)\end{array}\right]=\left[\begin{array}{cc}-1 & 2 \\ -2 & -1\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$

By Euler's formula we have: $e^{(-1 \pm 2 i)}=e^{-t}(\cos 2 t \pm i \sin 2 t)$
Collect real and imaginary parts, and simplify to obtain: $\overrightarrow{x(t)}=e^{-t}\left[\begin{array}{l}\cos 2 t+\sin 2 t \\ \cos 2 t-\sin 2 t\end{array}\right]$.
Ex: Find the general solution to the VDE $x^{\prime}=A x$ if $A=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$

Ex: Find the general solution to the VDE $x^{\prime}=A x$ if $A=\left[\begin{array}{cc}2 & -1 \\ 2 & 4\end{array}\right]$

Vector Differential Equations: Defective Coefficient Matrix:

Double Real Eigenvalues:

If the characteristic equation of the 2 by 2 matrix A has a double root, then A has only one eigenvalue and typically only one eigenvector. Suppose p is an eigenvector corresponding to λ. The function $x(t)=e^{\lambda t} p$ is a solution because $\quad x^{\prime}(t)=\lambda e^{\lambda t} p=e^{\lambda t} A p$; because $A p=\lambda p$.
However, $x(t)$ is not a general solution.
Let A have an eigenvalue λ with only one corresponding eigenvector p . let q be a generalized eigenvector, that is, a solution of the equation $(A-\lambda I)_{q}=p$. Then the general solution is

$$
x(t)=c_{1} e^{\lambda t} p+c_{2} e^{\lambda t}(q+t p)
$$

Ex: Find the solution of the IVP $x^{\prime}=A x=\left[\begin{array}{cc}-3 & 1 \\ -1 & -1\end{array}\right] x ; x(0)=\left[\begin{array}{l}1 \\ 3\end{array}\right]$

