Def: A function $f(x, y)$ is said to be homogeneous of degree zero if $f(t x, t y)=f(x, y)$ for all positive values of t for which $(t x, t y)$ is in the domain of f.
$\underline{E x}$: Verify if the following functions are homogeneous of degree zero
a) $f(x, y)=\frac{x}{y}$;
b) $f(x, y)=\frac{\sqrt{3 x^{2}+x y+5 y^{2}}}{7 x-3 y}$

Theorem: A function $f(x, y)$ is homogeneous of degree zero if and only if it depends on y / x only.

Proof: Suppose that f is homogenous of degree zero. We must consider two cases separately.
(a) if $\mathrm{x}>0$, we can take $t=1 / x \Rightarrow f(x, y)=f(1 / t, y)=f(1, y t)=f(1, y / x)$ which is a function of y / x.
(b) if $\mathrm{x}<0$, then we can take $t=-1 / x \Rightarrow f(x, y)=f(-1 / t, y)=f(-1,-y t)=f(-1,-y / x)$, this clearly is also a function of y / x.

Conversely, suppose that $f(x, y)$ depends only on y / x. If replace x by tx and y by ty then f is unaltered and hence is homogeneous of degree zero.

Technique: If $f(x, y)$ is a homogenous of degree zero, then the $\mathrm{DE}, \frac{d y}{d x}=f(x, y)$ is called a homogeneous first order DE. So we see that $\frac{d y}{d x}=f(x, y)$, we can not solve it directly. However, we can think of $\frac{d y}{d x}=f(x, y)=F(y / x)$ for some function F and let y / x be a dummy variable we have $V=y / x \Rightarrow y=x V(x) \Rightarrow \frac{d y}{d x}=x \frac{d V}{d x}+V$, substituting into the DE, we have $x \frac{d V}{d x}+V=F(V) \rightarrow$ Separation of variables we have $x \frac{d V}{d x}=F(V)-V \Leftrightarrow \frac{d V}{F(V)-V}=\frac{d x}{x}$

Theorem: The change of variables $y=x V(x)$ reduces a homogeneous first-order $\mathrm{DE} \frac{d y}{d x}=f(x, y)$ to the separable equation $\frac{d V}{F(V)-V}=\frac{d x}{x}$

Ex: Solve the following:
a)

$$
\frac{d y}{d x}=\frac{4 x+y}{x-4 y}
$$

b) $\quad\left(x y+y^{2}+x^{2}\right) d x-x^{2} d y=0$
b) $\quad\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$

Substitution and Transformations

When the right hand side of the equation $\frac{d y}{d x}=f(x, y)$ can be expressed as a function of $a x+b y$ where a and b are constants, that is $\frac{d y}{d x}=G(a x+b y)$, then substitute $z=a x+b y$
Ex: Solve the following:
a) $\frac{d y}{d x}=y-x-1+(x-y+2)^{-1}$
b) $\quad \frac{d y}{d x}=\sqrt{x+y}-1$
c) $\frac{d y}{d x}=\cos (4 x+4 y-3)$

Bernoulli Equations: A DE that can be written in the form $\frac{d y}{d x}+p(x) y=q(x) y^{n}$ where n is a constant.
Note: if $n \neq 0,1$, then a Bernoulli equation is non-linear, but can be reduced to a linear equation as follows:
Divide equation by y^{n} to obtain $y^{-n} \frac{d y}{d x}+y^{1-n} p(x)=q(x)$. Now let $u(x)=y^{1-n} \Rightarrow \frac{d u}{d x}=(1-n) y^{-n} \frac{d y}{d x}$
Therefore, we have $y^{-n} \frac{d y}{d x}=\frac{1}{1-n} \frac{d u}{d x}$. Substitute into the equation, we have
$\frac{1}{1-n} \frac{d u}{d x}+u(x) p(x)=q(x) \Leftrightarrow \frac{d u}{d x}+(1-n) u(x) p(x)=(1-n) q(x) \leftarrow$ This is a linear equation of u in term of x . We can solve for u of x .

Ex: Solve the following DE
a) $x \frac{d y}{d x}+y=x^{2} y^{2}$
b) $\quad \frac{d y}{d x}+\frac{3}{x} y=\frac{12 y^{2 / 3}}{\left(1+x^{2}\right)^{1 / 2}} ; x>0$
c) $\frac{d y}{d x}-5 y=-\frac{5}{2} x y^{3}$

Equations with Linear Coefficients:

We have used various substitutions for y to transform the original equation into a new equation that we could solve. In some cases we must transform both x and y into new variables, say u and v . This is the situation for equations with linear coefficients, that is equation of the form

$$
\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right) d y=0 \text { Where } a_{i}{ }^{\prime} s ; b_{i}{ }^{\prime} s \text { and } c_{i}{ }^{\prime} s \text { are constants. }
$$

When $a_{1} b_{2}=a_{2} b_{1}$, then equation can be put into the form $\frac{d y}{d x}=G(a x+b y)$.
Before considering the general case when $a_{1} b_{2} \neq a_{2} b_{1}$, let's first look at the special situation when $c_{1}=c_{2}=0$ then the equation becomes $\left(a_{1} x+b_{1} y\right) d x+\left(a_{2} x+b_{2} y\right) d y=0$, when can be rewritten in the form

$$
\frac{d y}{d x}=-\frac{a_{1} x+b_{1} y}{a_{2} x+b_{2} y}=-\frac{a_{1}+b_{1}(y / x)}{a_{2}+b_{2}(y / x)} \Leftarrow \text { This is homogeneous of order zero, so let } V=\frac{y}{x}
$$

Now, in general, when $a_{1} b_{2} \neq a_{2} b_{1}$, then we seek a translation of axes of the form $x=u+h ; y=v+k$ where h and k are constants, that will change $a_{1} x+b_{1} y+c_{1}$ into $a_{1} u+b_{1} v$ and $a_{2} x+b_{2} y+c_{2}$ into $a_{2} u+b_{2} v$ $a_{1} x+b_{1} y+c_{1}=a_{1}(u+h)+b_{1}(v+k)+c_{1}=a_{1} u+b_{1} v+a_{1} h+b_{1} k+c_{1} \Rightarrow a_{1} h+b_{1} k+c_{1}=0$
$a_{2} x+b_{2} y+c_{2}=a_{2}(u+h)+b_{2}(v+k)+c_{2}=a_{2} u+b_{2} v+a_{2} h+b_{2} k+c_{2} \Rightarrow a_{2} h+b_{2} k+c_{2}=0$
So basically, we need to solve the system of linear equations $\left\{\begin{array}{l}a_{1} h+b_{1} k+c_{1}=0 \\ a_{2} h+b_{2} k+c_{2}=0\end{array}\right.$ for h and k .
Then we have $\frac{d v}{d u}=-\frac{a_{1} u+b_{1} v}{a_{2} u+b_{2} v} \Leftarrow$ Homogeneous of order zero.
$\underline{\boldsymbol{E x}}: \quad$ Solve $(-3 x+y+6) d x+(x+y+2) d y=0$

