
Section 8.4  Matrix Exponential Function. 
Given a DE:  
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Properties of the matrix exponential function: 

1. ( )A B t At Bte e e+ =  

2. For all square matrices A, Ate is invertible and ( ) 1At At At Ate e e e I
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Note: In general  ( ) ( )11 22
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Theorem: Let A be a non-defective square matrix with n linearly independent 

eigenvectors:  { }1 2, ,..., nB v v v=
  

.  Then 1At Dte Pe P−= where P is a matrix of eigenvectors and 

D is a diagonal matrix whose entries are eigenvalues of A. 
 

Ex: Compute the function 
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How do we apply matrix exponential function to solve a system of DE: 
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If we let ( ) ( ) ( )0' 0 AAte fundamental matrix A and e IΦ = ⇒Φ = Φ Φ = = and   

So, given a system of DE:   ( ) ( ) ( ) ( )
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It’s the same as section 8.3  ( ( ) ( ) ( ) ( ) ( )
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Solve system of DE by Laplace Transform:  ;dX AX
dt

=




Let  ( ) AtX t e= be a solution 

Then ( ) ( )00 AX e I= =  

Apply Laplace both sides of the DE:  
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Ex: Using Laplace Transform to solve:  
1 1
2 2

A
− 

=  − 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


