Section 8.4 Matrix Exponential Function.
Given a DE:

$$
\begin{aligned}
& y^{\prime}=a y=>y=C e^{a t} \\
& \overrightarrow{y^{\prime}(t)}=A_{n \times n} \overrightarrow{y(t)} \Rightarrow \overrightarrow{y(t)}=\left[e^{A t}\right]_{n \times n} \overrightarrow{C_{n \times 1}}
\end{aligned}
$$

Taylor expansion (Maclaurin's series) $f(x)=e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
Def: $\quad e^{A t}=I+(A t)+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\ldots=I+A t+\frac{A^{2}}{2!} t^{2}+\frac{A^{3}}{2!} t^{3}+\ldots$
Properties of the matrix exponential function:

1. $e^{(A+B) t}=e^{A t} e^{B t}$
2. For all square matrices $\mathrm{A}, e^{A t}$ is invertible and $\left(e^{A t}\right)^{-1}=e^{-A t}=\Rightarrow e^{A t} e^{-A t}=I$

Ex: Compute $e^{A t}$ if $A=\left[\begin{array}{rr}2 & 0 \\ 0 & -1\end{array}\right]$

Note: In general If $A=D\left(a_{11}, a_{22}, \ldots, a_{n n}\right) \Rightarrow e^{A t}=D\left(e^{a_{11} t}, e^{a_{22} t}, \ldots, e^{a_{m n} t}\right)$

Theorem: Let A be a non-defective square matrix with n linearly independent eigenvectors: $B=\left\{\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}\right\}$. Then $e^{A t}=P e^{D t} P^{-1}$ where P is a matrix of eigenvectors and $D$ is a diagonal matrix whose entries are eigenvalues of $A$.

Ex: Compute the function $e^{A t}$ if $A=\left[\begin{array}{ll}3 & 3 \\ 5 & 1\end{array}\right]$

How do we apply matrix exponential function to solve a system of DE:
Given $e^{A t}=I+(A t)+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\ldots=I+A t+\frac{A^{2}}{2!} t^{2}+\frac{A^{3}}{2!} t^{3}+\ldots$
$\frac{d}{d t} e^{A t}=\frac{d}{d t}\left(I+A t+\frac{A^{2}}{2!} t^{2}+\frac{A^{3}}{3!} t^{3}+\ldots\right)=A+A^{2} t+\frac{A^{3}}{2!} t^{2}+\frac{A^{4}}{3!} t^{3}+\ldots$
$\frac{d}{d t} e^{A t}=A\left[I+A t+\frac{A^{2}}{2!} t^{2}+\frac{A^{3}}{3!} t^{3}+\ldots\right]=A e^{A t}==>\frac{\overrightarrow{d y}}{d t}=A \overrightarrow{y(t)}$
If we let $\Phi=e^{A t}$ ( fundamental matrix $) \Rightarrow \Phi^{\prime}=A \Phi$ and $\Phi(0)=e^{A(0)}=I$ and
So, given a system of DE: $\frac{\overrightarrow{d x}}{d t}=A \overrightarrow{x(t)}+\overrightarrow{F(t)} \Rightarrow$ solution: $\overrightarrow{x(t)}=e^{A t} \vec{C}+e^{A t} \int_{t_{0}}^{t} e^{-A s} F(s) d s$ It's the same as section $8.3\left(\overrightarrow{x(t)}=\Phi(t) \vec{C}+\Phi(t) \int_{t_{0}}^{t} \Phi^{-1}(s) F(s) d s\right.$

Solve system of DE by Laplace Transform: $\frac{\overrightarrow{d X}}{d t}=A \vec{X}$; Let $X(t)=e^{A t}$ be a solution Then $X(0)=e^{A(0)}=I$
Apply Laplace both sides of the DE :

$$
\begin{aligned}
& L\left(\frac{d X}{d t}\right)=L(A X) \\
& s L(X)-X(0)=A L(X) \\
& (s I-A) L(X)=I==>L(X)=(s I-A)^{-1} \\
& X(t)=L^{-1}\left((s I-A)^{-1}\right)
\end{aligned}
$$

Ex: Using Laplace Transform to solve: $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -2\end{array}\right]$

