Physiology
Unit 2

CONTROL OF MOVEMENT
Motor Program

• Pattern of neural activity required to properly perform the desired movement

• Highest level
 – Motor cortex
 – Decide what movement will occur

• Middle level
 – Cerebellum, basal ganglia, thalamus, brainstem, spinal cord,
 – Postures and movements needed to carry out the action
 – Receives sensory input from local level

• Local level
 – Brainstem, Spinal cord
 – Afferent neurons, Motor neurons, Interneurons
 – Monitors muscle length and tension constantly adjusting muscle contraction
Control of Body Movement

Motor Control Hierarchy
Local Control of Motor Neurons

• Local control levels are *relay points* for instructions coming from higher levels in the motor program

• Adjusting motor unit activity to local conditions (obstacles to movement, pain)

• Local control systems use sensory information from sensory receptors
 – Muscles
 – Tendons
 – Joints
 – Overlying skin

Somatic Nervous System
Interneurons

- Most of the synaptic input from descending pathways to motor neurons are from interneurons
- 90% of spinal cord neurons
- Integrate inputs
 - Higher centers
 - Peripheral receptors
 - Other interneurons
- Determine which muscles are activated and when
 - Coordinates repetitive, rhythmic activities
 - Walking, running
- Can turn movements on or off
 - Grabbing a hot plate
Reflex Arc

• The basic anatomical/functional unit of the nervous system

• Components:
 1. Sensory receptor
 2. 1st order sensory neuron
 3. Integrating center (brain/spinal cord)
 4. Motor neuron
 5. Effector organ (skeletal muscle, cardiac muscle, smooth muscle, glands)
Reflex Arc Components

1. Sensory receptor
 - Constantly samples its environment
 * Phasic receptors
 * Tonic receptors

2. 1st order sensory neuron
 - Afferent, peripheral; leading to the CNS

3. Integrating/coordinating center
 - Central nervous system
 * Processes all incoming sensory information
 * Integrates sensory information
 * Coordinates motor commands
Reflex Arc Components

4. Motor neuron
 - Efferent, peripheral; leading from the CNS
 • Somatic motor neuron
 • Autonomic motor neuron
 • Sympathetic division
 • Parasympathetic division

5. Effector organ
 - A muscle or a gland that responds
 - Skeletal muscle (somatic)
 - Smooth muscle, cardiac muscle, glands (autonomic)
The Spinal Cord: Reflex Arc

- Controls reflex activity
Local Afferent Input

• Afferent fibers bring information from sensory receptors from
 – Skeletal muscles (*prime movers*)
 – Nearby muscles (*synergists, antagonists, fixators*)
 – Tendons, joints and skin affected by the movement

• Sensory receptors for local skeletal muscle control monitor
 – Length and tension
 – Joint movement
Length Monitoring System

• Muscle spindle stretch receptors
 – Stretch receptors embedded in muscle
• Monitor muscle length
• The more or the faster the muscle is stretched the greater the rate of receptor firing
• Contraction of the extrafusal fibers shortens the muscle and slows down the rate of firing
Alpha-Gamma Co-Activation

- Prevents loss of sensory information when the muscle is contracting
- Alpha motor neurons
 - Extrafusal fibers
- Gamma motor neurons
 - Gamma motor neurons stimulate the two ends of the intrafusal fibers to contract
 - Maintains tension in the spindle apparatus
Tension Monitoring Systems

- Tension depends on
 - Muscle length
 - Load on muscle
 - Degree of muscle fatigue

- Sensory information on tension
 - Vision
 - Somatosensory input
 - Golgi tendon organs

- Inhibitory synapses prevent excessive contraction or passive stretching
Monosynaptic Reflex

- Reflex response that involves ONLY one synapse
- Sensory neuron from the extensor muscle synapses with the motor neuron for that extensor muscle
- Only found in the stretch reflex
Polysynaptic Reflex

- Reflex response that involves **MORE THAN** one synapse
 - Interneurons
- Ipsilateral’s flexor muscle’s motor neuron stimulated
 - Withdrawal reflex
- Opposite limb (contralateral) extended to support the body’s weight
 - Crossed extensor reflex
Control by the Cerebral Cortex

- Planning and controlling ongoing movement
- **Motor cortex, premotor area**
 - Gives rise to most nerve fibers to descending pathways for motor control
- Cortical neurons form a neural network
 - Many neurons participate in each single movement
 - Coordination of many parts to produce a smooth, purposeful movement
Subcortical and Brainstem Nuclei

• Planning and monitoring movement
• Establish the program that determines the specific sequence of movements needed to accomplish a desired action

• **Basal ganglia**
 – Subcortical nuclei
 – Link circuits
 • Some facilitate movements
 • Some suppress movements
Cerebellum

1. Influences balance and posture
 – Input to brainstem nuclei
2. Provides timing signals to the cortex and spinal cord
 – For precise execution of different phases of the motor program
 – Agonist/antagonist timing
3. Coordinates movement involving multiple joints
4. Stores memories of movements
 – Easier to accomplish the next time
Types of Descending Pathways

• Pyramidal Tract (corticospinal pathway)
 – Planning tracts
 – From motor cortex
 – Excitatory

• Extrapyramidal Tract (brainstem pathway)
 – Coordinating tracts
 • Excitatory/Inhibitory
 – From brainstem
 – Coordinate the “plan” from the motor cortex
 – Maintain posture during movement
Descending Pathways
Corticospinal Pathway

- Pyramidal tract
- Nerves from motor cortex terminate in the spinal cord
- Decussation of the pyramids in medulla
- Convergence/divergence
- Control musculature involved in fine isolated movements
 - Hands, fingers
Descending Pathways
Brainstem Pathway

- Extrapyramidal tract
- Nerves in the brain stem terminate in the spinal cord
- Mostly ipsilateral
- Control large muscle groups
 - Posture
 - Locomotion
 - Head, body movements turning towards a stimulus
Muscle Tone

• Muscle Tone
 – Resistance to stretch
 – Tension
 – Elastic properties of muscle, tendons
• Slightly contracted state of muscles even at rest
• Maintained by stretch reflexes
• Function
 – Helps stabilize joints
 – Improves posture
 – Creates optimal length for muscle contraction
• Requires constant sensory feedback to control muscle activity