CONSCIOUSNESS, THE BRAIN AND BEHAVIOR
In Physiology Today

(a) Awake

NREM (slow-wave) sleep

Stage 1

Stage 2

Stage 3

Stage 4

(b) REM (paradoxical) sleep

Time
What the Brain Does

• The nervous system determines states of consciousness and produces complex behaviors
• Any given neuron may have as many as 200,000 synapses with other neurons
• Brain activity
 – States of consciousness
 – Conscious experiences
 – Motivation and emotion
 – Learning and memory
 – Spatial awareness and language
States of Consciousness

Consciousness includes 2 distinct concepts

• States of consciousness
 – The waking state
 – Drowsy
 – Sleep
 – Coma
 – Brain death

• Conscious experiences
 – Thoughts
 – Feelings
 – Perceptions
 – Ideas
 – Dreams
 – Reasoning
States of Consciousness

• Defined 2 ways
 1. By behavior
 – Maximum attentiveness to coma
 2. Measured by pattern of brain activity
 – Electrical activity of neurons in the brain recorded
 – Electroencephalogram (EEG)
EEG

• Electrical activity of cortical neurons is measured by electrodes placed on the scalp
 – Electrical potential differences between different points on the scalp
 – EEG patterns are mostly due to graded potentials
 • Summed postsynaptic potentials
 • Activity from hundreds to thousands of neurons just below the electrode
EEG

• The majority of the activity is measured from pyramidal cells of the cortex
• Records postsynaptic potentials from the dendrites

Pyramidal cells use glutamate as their excitatory NT and GABA as their inhibitory NT
EEG

- **Amplitude**
 - Measured as \(\mu V \)
 - Range 0.5 – 100 \(\mu V \)
 - High amplitude
 - many neurons are activated simultaneously
 - Synchronous firing
 - Low amplitude
 - Fewer neurons are activated
 - Asynchronous firing

- **Frequency**
 - Measured in Hz
 - Cycles per second
 - Range 1-40 Hz
 - Lower frequency
 - Less responsive states
 - Sleep
 - Higher frequency
 - Increased alertness
• Typical EEG
• Recorded from the parietal or occipital lobe
• Awake, relaxed person
• 4 seconds of activity
• Duration of a single wave 50 msec
The Waking State

• Alpha rhythm
 – Most prominent EEG wave pattern of an awake, relaxed adult whose eyes are closed
 – Decreased levels of attention
 – Subject feels relaxed and happy
The Waking State

- Beta rhythm
 - Attentive to an outside stimulus
 - Thinking about something
 - Low amplitude, higher frequency
Sleep

• EEG wave patterns change during sleep

• Becoming drowsy
 – Decrease in alpha-wave amplitude and frequency

• Asleep
 – Slower frequency higher amplitude wave patterns
 – Theta rhythms
 – Delta rhythms
 – Changes in
 • Posture
 • Ease of arousal
 • Motor output
 • Threshold for sensory stimuli

If sleep is SO important... Then why does school start so early?
Sleep

NREM
- Non rapid eye movement behind a closed eyelid
- Slow wave sleep
 - Waves are **high amplitude, low frequency**
- 4 stages
 - Each stage is characterized by an EEG pattern with a slower frequency and higher amplitude than the preceding one

REM
- Rapid eye movement behind a closed eyelid
- Paradoxical sleep
 - Sleeper is difficult to arouse despite having EEG characteristics of the awake, alert state
- Dreaming occurs
NREM Sleep

• Progression from stage 1-4
• Process reverses itself
• Instead of waking up, move into REM sleep
NREM Sleep

- Sleep continues in the cyclical pattern, if uninterrupted
 - 1,2,3,4 then 4,3,2,1 episode of REM sleep then repeats
 - Lasts 90-100 minutes

- Average total nights sleep comprises 4-5 cycles

Purple bars are periods of REM sleep
NREM Sleep

• As a person moves from drowsiness to stage 1 sleep
 – Muscles become more relaxed as sleep progresses
 • Except ocular and respiratory muscles
• Pulsatile release from anterior pituitary
 – Growth hormone
 – Gonadotropins \((FSH, LH) \)
• Decrease in blood pressure, heart rate, respiratory rate
REM Sleep

• REM sleep is 20-25% of a young adults total sleep time
 – Declines with age
• Duration of REM sleep increases toward the end of an undisturbed night
• Characterized by increase and irregularity
 – Blood pressure
 – Heart rate
 – Respiratory rate
• Muscle twitches may occur (face and limbs)
Why Do We Sleep

• A homeostatic requirement

• Importance of sleep
 – Learning and memory
 – Brain experiences reactivation of neural pathways stimulated during the prior awake state
 – Dampens overall neural activity which, in turn, strengthens synapses in pathways involved in learning and memory
Lack of Sleep

• Impairs immune function

• Causes cognitive deficits
 – Intellect
 • Reasoning
 • Perception
 • Intelligence
 • Learning

• Less effective memory retention
Circadian Rhythms

• Circadian rhythms are an average of 8 hours of sleep and 16 hours awake
• Hypothalamus and the brain stem drive cyclical changes
• Neurons of brainstem give rise to axons that branch to synapse with wide areas of the brain
 – Called the *reticular activating system* (RAS)
Circadian Rhythms

• Alternating reciprocal activity of different RAS neurons cause shifts from one state to another

• The waking state
 – Neurons that release NE and Serotonin dominate

• Sleep
 – NREM
 • Intermediate activity of NE, Serotonin and ACh
 – REM
 • Cholinergic neurons are dominant

>30 NTs have been identified that affect sleep
Hypothalamus Control of Circadian Rhythms

- Preoptic area
 - GABAergic neurons
 - Promotes slow wave sleep (NREM 3-4)
 - Inhibits center in hypothalamus that stimulates wakefulness
 - Inhibits histamine

- Suprachiasmatic nucleus
 - Stimulates the production of **melatonin** by the pineal gland
 - Timing of sleep/wake cycles relative to periods of light/dark
Motivation

• Primary motivated behavior
 – Related to homeostasis
 – Body needs are satisfied
 – Example: getting a drink of water when you are thirsty

• Secondary motivated behavior
 – Not all motivated behavior relates to homeostasis
 – Deciding what type of soda to drink
 – Influenced by incentives (cravings, habit, learning, intellect and emotions)
Emotion

• Physiological basis of emotion
 – Emotional behavior
 • The hormonal, autonomic and outward expressions and displays of response to the stimulus
 – Inner emotions
 • The conscious experience such as feelings of love, fear, anger, joy, anxiety, hope, etc.
Emotion

- Emotional behavior
 - Limbic system
 - Cerebral cortex
- Amygdala and association cortex are central to most emotional states
Learning

• Learning
 – Acquisition and storage of information
 – Rewards and punishments crucial to learning

• Memory
 – Relatively permanent storage of learned information
 – Brain processes, stores and retrieves information in different ways to suit different needs
Memory

- **Memory encoding**
 - The physiological events that lead to memory formation

- **Declarative memory**
 - Retention and recall of conscious experiences that can be put into words

- **Procedural memory**
 - Memory of how to do things
 - Learned emotional responses (fear, Pavlov’s dog)
Memory

• Short-term memory
 – Registers and retains information from seconds to minutes after its input
 – Working memory

• Long-term memory
 – Stored for days to years and recalled at a later time
 – Consolidation is the conversion of short-term to long-term memory
 – Focusing attention is essential for memory-based skills
 – The longer the span of attention in working memory, the better the ability to do things (practice makes perfect)
Memory

- Long-term potentiation
 - Certain synapses undergo a long-lasting increase in their effectiveness when they are heavily used
 - High frequency action potentials
 - Stimulates the post-synaptic neuron for a longer amount of time
 - Both AMPA and NMDA receptors activated simultaneously
Memory

- Hormones, consequences of our experiences affect our memories of them
 - Hormones normally released in stressful or mildly stimulating experiences
 - Opioid peptides interfere with learning and memory when the lesson involves pain
 - Inhibit learning by decreasing the emotional component of the learning experience (fear, anxiety)
 - Decrease the motivation necessary for learning
Cerebral Dominance

Each hemisphere of the brain has anatomical, chemical, functional specializations.
Left Brain, Right Brain

• **Left Hemisphere**
 – The left brain is the logical brain responsible for words, logic, numbers, analysis, lists, linearity and sequence. It controls the right side of your body.

• **Right Hemisphere**
 – The right brain is the creative brain and is responsible for rhythm, spatial awareness, color, imagination, daydreaming, holistic awareness and dimension. It controls the left side of your body.

• **Corpus Callosum**
 – The corpus callosum is a thick band of nerve fibers which connect the brain cells in one hemisphere to those in the other hemisphere. The two hemispheres keep up a continuous conversation via this neural bridge.
Male vs. Female Brain

- **Female Brain:** larger regions
 - parts of the frontal lobe
 - problem-solving and decision-making
 - Limbic system structure
 - regulating emotions
 - White matter

- **Male Brain:** larger regions
 - Parietal cortex, which is involved in
 - space perception
 - Amygdala
 - sexual and social behavior
 - Gray matter
Language

• A complex code that involves
 – Listening
 – Seeing
 – Reading
 – Speaking

• Centers for language function in the left hemisphere

• Cerebellum important in speaking and writing
 – Involve coordinated muscle contractions

• Males and females use different areas for language and processing (different strategies)