4b. Innate (nonspecific) Immunity

Chapter 16: Innate (nonspecific) Immunity

Some terms:

- <u>Susceptibility</u>: Lack of immunity to a disease.
- <u>Immunity</u>: Ability to ward off disease.
- Innate immunity: Defenses against any pathogen.
 - Does not involve specific recognition of a microbe
 - No memory response
- Adaptive immunity
 - Specific response to a specific microbe once a microbe has breached the innate immunity defenses!
 - Slower to respond but develops memory

An overview of the body's defenses

Innate Immunity		Adaptive Immunity (Chapter 17)
First line of defense	Second line of defense	Third line of defense
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Phagocytes, such as neutrophils, eosinophils, dendritic cells, and macrophages Inflammation Fever Antimicrobial substances 	 Specialized lymphocytes: T cells and B cells Antibodies
Copyright © 2010 Pearson Education, Inc.		1 4c

The Concept of Innate Immunity

On Your Cells!

 Host Toll-like receptors (TLRs) attach to

On Pathogen!

- Pathogenassociated molecular patterns (PAMPs)
- TLRs induce cytokines that regulate the intensity and duration of immune responses

ingestion, and digestion.

Copyright @ 2010 Pearson Education, Inc

A. Physical barriers (first line of defense)

- skin, mucous membranes = prevent entry to most pathogens
- Epidermis consists of tightly packed cells
 with
 - Keratin, a protective protein

30 µm

B. Lysozyme

 enzyme in tears, sweat, saliva, etc that dissolves bacterial cell walls (digests peptidoglycan)

C. Respiratory cilia

carry pathogens out of lungs

Respiratory cilia

Microorganisms enter respiratory tract Microorganisms attach to mucous membrane Wave-like motion of cilia drives microorganisms upward

D. Stomach acid

- HCl at pH 1-2
- kills many, but not all pathogens

Physical factors

- Mucous membranes
- Ciliary escalator: Microbes trapped in mucus are transported away from the lungs.
- Lacrimal apparatus: Washes eye.
- Saliva: Washes microbes off.
- Urine: Flows out.
- Vaginal secretions: Flow out.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Chemical Factors

- Fungistatic fatty acid in sebum
- Low pH (3–5) of skin
- Lysozyme in perspiration, tears, saliva, and urine
- Low pH (1.2–3.0) of gastric juice
- Low pH (3–5) of vaginal secretions

Normal Microbiota and Innate Immunity

- Microbial antagonism/competitive exclusion: Normal microbiota compete with pathogens or alter the environment
- Commensal microbiota: One organism (microbe) benefits and the other (host) is unharmed
 - May be opportunistic pathogens

Innate (Nonspecific) Immunity

First line of defense	Second line of defense
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Natural killer cells and phagocytic white blood cells Inflammation Fever Antimicrobial substances

Mammalian Blood Composition

- - Water
 - Ions
 - Plasma Proteins
 - Nutrients
 - Waste
 - Gases
 - Hormones

- <u>Plasma</u> (55%) <u>Cellular</u> Elements (45%)
 - Erythrocytes
 - Leukocytes
 - Thrombocytes

Formed Elements in Blood

TABLE 16.1	Formed Elements in Blood
Type of Cell	
Erythrocytes (R	ed Blood Cells)
Platelets	

Type of Cell

Leukocytes (White Blood Cells)

A. Granulocytes (stained) 1. Neutrophils (PMNs) (60–70% of leukocytes)

2. Basophils (0.5-1%)

3. Eosinophils (2-4%)

4. Dendritic cells

TABLE 16.1	Formed	Elements in Blood	(continued)	
Type of Cell				Numbers per Microliter (µL) or Cubic mm (mm ³)
B. Agranulocytes 1. Monocytes	(stained) (3–8%)			C.a.
 Lymphocytes Natural k (NK) cells 	s (20–25%) tiller s			
• T cells			8	
• B cells		1965		
		Q		
*Discussed in Cha	pter 17.			

Differential White Cell Count

Percentage of each type of white cell in a sample of 100 white blood cells

Neutrophils	60–70%
Basophils	0.5–1%
Eosinophils	2–4%
Monocytes	3–8%
Lymphocytes	20–25%

White Blood Cells

- Neutrophils: Phagocytic (most abundant)
- Basophils: Produce histamine
- Eosinophils: Toxic to parasites and some phagocytosis (worm infections)
- Dendritic cells: Initiate adaptive immune response
- Monocytes: Phagocytic as mature macrophages
 - Fixed macrophages in lungs, liver, and bronchi
 - Wandering macrophages roam tissues.
- Lymphocytes: Involved in specific immunity.

Figure 16.7

Copyright © 2010 Pearson Education, Inc.

Microbial Evasion of Phagocytosis

Inhibit adherence: M protein, capsules	Streptococcus pyogenes, S. pneumoniae
Kill phagocytes: Leukocidins	Staphylococcus aureus
Lyse phagocytes: Membrane attack complex	Listeria monocytogenes
Escape phagosome	Shigella, Rickettsia
Prevent phagosome-lysosome fusion	HIV, Mycobacterium tuberculosis
Survive in phagolysosome	Coxiella burnettii

Inflammation

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Inflammation

- Redness
- Pain
- Heat
- Swelling (edema)
- Acute-phase proteins activated (complement, cytokine, and kinins)
- Vasodilation (histamine, kinins, prostaglandins, and leukotrienes)
- Margination and emigration of WBCs
- Tissue repair

chemotaxis: phagocytes attracted

Tissue Repair

(d) Tissue repair

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Innate Immunity		Adaptive Immunity (Chapter 17)
First line of defense	Second line of defense	Third line of defense
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Phagocytes, such as neutrophils, eosinophils, dendritic cells, and macrophages Inflammation Fever Antimicrobial substances 	 Specialized lymphocytes: T cells and B cells Antibodies

Copyright © 2010 Pearson Education, Inc.

Fever

- Abnormally high body temperature
- Hypothalamus normally set at 37°C
- Gram-negative endotoxin cause phagocytes to release interleukin–1 (IL–1)
- Hypothalamus releases prostaglandins that reset the hypothalamus to a high temperature
- Body increases rate of metabolism and shivering which raise temperature
- Vasodilation and sweating: Body temperature falls (crisis)

Fever

- A moderate fever is beneficial to host defenses
- speeds up body defenses; slows down growth of pathogens
- Fever producing *pyrogens* are produced by activated macrophages as well as bacteria, viruses, and other microbes
 - Stimulate hypothalamus to raise body temp.
 - Thus cell metabolism increases and blood vessels constrict keeping heat within (cold skin/chills with fever)
 - But, above 105⁰ F, convulsions and death may result
 - Infants >100°F and older children >102°F need medical attention!

Antimicrobial substances: The Complement System

- Complement (complement system): a series of over 30 blood proteins (produced by the liver) that circulate in the bloodstream and sequentially bond together to causes lysis of pathogens, inflammation and help phagocytosis
- "complements" the cells of the immune system in destroying microbes
 Loss of cellular conter
- can be a specific or nonspecific defense

Compliment Sysmtem

Interferons (IFNs) messenger proteins produced by virus-

- messenger proteins produced by virusinfected cells
- tell surrounding cells to produce anti-viral protein
- also produced by genetic engineered microorganisms for injection as antiviral

Copyright @ 2010 Pearson Education, Inc.

Summary of Second Line of Defense

Table 16.2	Summary of Innate Immunity Defenses (continued)	
Component		Functions
SECOND LINE	OF DEFENSE	
Defensive Cells		
Phagocytes		Phagocytosis by cells such as neutrophils, eosinophils, dendritic cells, and macrophages.
Natural killer	(NK) cells	Kill infected target cells by releasing granules that contain perforin and granzymes. Phagocytes then kill the infected microbes.
Inflammation		Confines and destroys microbes and initiates tissue repair.
Fever		Intensifies the effects of interferons, inhibits growth of some microbes, and speeds up body reactions that aid repair.
Antimicrobial S	ubstances	
Complement	system	Causes cytolysis of microbes, promotes phagocytosis, and contributes to inflammation.
Interferons		Protect uninfected host cells from viral infection.
Iron-Binding	Proteins	Inhibit growth of certain bacteria by reducing the amount of available iron.
Antimicrobia	l Peptides (AMPs)	Inhibit cell wall synthesis, form pores in the plasma membrane that cause lysis; and destroy DNA and RNA.

Copyright @ 2010 Pearson Education, Inc.

Stress theory of disease

- Hans Selye
- A. Stressor: any force that elicits the stress response
 - invasion by pathogen
 - trauma
 - surgery
 - emotional conflict
 - performance demands
 - difficult relationships
 - life changes (positive or negative)

B. Stress

- the body's response to any stressor
- includes many measurable physiological changes intended to increase resistance to stressors
- also called the General Adaptation Syndrome
- 1. <u>Eustress</u>: beneficial stress; appropriate in degree and duration; produces optimum physical and mental function and resistance to pathogens
- 2. <u>Distress</u>: harmful stress; excessive in degree and/or duration; impairs physical and mental function; reduces resistance to pathogens
- Stress management