Welcome to Pathogen Group 4

- *Chlamydia trachomatis*
 - Trachoma
 - Genital chlamydia
- *Chlamydophila (Chlamydia) psittaci*
- *Bacillus anthracis*
- *Neisseria meningitidis*
- *Haemophilus influenzae, type B*
- *Helicobacter pylori*
Chlamydia trachomatis: Trachoma and Genital Chlamydia

- Characteristics of all chlamydias:
- Tiny, obligate intracellular parasites
- Oval cell walls
- Elementary bodies: smaller, stronger cell wall, transmit infections
- Reticulate bodies: larger, weak cell walls, actively reproducing form
Trachoma

- chronic infection of conjunctiva of eye
- transmitted by ocular discharges
- causes vascular invasion of cornea
- world’s #1 cause of blindness
- easily cured with antibiotic ointment
Genital chlamydia

- #1 STD in the United States
- chronic infection of urogenital membranes
- symptoms often slight or none
- if untreated: sterility in either sex; PID in female (pelvic inflammatory disease); increased risk of tubal pregnancy
- Coinfection with gonorrhea common
- Awesome CDC fact sheet
Chlamydia in neonate’s eyes
Chlamydia diagnosis

- A. Laboratory based:
 - Cell cultures (difficult)
 - Nucleic acid amplification (NAA) tests
 - Nucleic acid hybridization (NA probes)
 - Direct fluorescent antibodies (DFA)

- B. Point of care tests (faster, more expensive, less sensitive, less specific):
 - Enzyme labeled monoclonal antibodies
lymphogranuloma venereum (LGV)

- special strain of *C. trachomatis*
- enlarged lymph node
Chlamydophila (Chlamydia) psittaci: ornithosis

- other names: psittacosis, parrot fever
- reservoirs: birds (all kinds)
- usually transmitted by inhalation from feces or secretions of birds; person to person very rare
- systemic disease
- Form of pneumonia; flu-like symptoms (can be severe)
- fever, chills, headache, photophobia, cough, myalgia
- No vaccine
Bacillus anthracis: Anthrax

- Gram + bacillus
- spore forming
- capsule
- nonmotile
- aerobic
- formerly common; now rare in U.S.
- reservoir: wild or domestic animals
- spores survive long time in soil and on animal products
- many modes of transmission
• can start as skin lesion or lung or intestinal infection; may become systemic
• immunize animals and high-risk people
Anthrax update: Forms of anthrax

Skin
Though the cutaneous variety accounts for most anthrax cases, it’s the least deadly form of the disease.

Contact
Anthrax spores enter the skin through minor cuts and abrasions, where they grow into toxin-producing bacteria.

Rash
Starts with welt or swelling and progresses from a fluid-filled blister to a black, ulcerous lesion lasting up to two weeks.

Attacks Skin
Toxins strike surrounding tissue. Body responds, sending immune cells to consume invading microbes.

From Skin
Immune cells can carry microbes back to lymph nodes.

20% fatal
Lung
The deadliest form of anthrax and the most likely to result from exposure to airborne spores.

INHALATION
Airborne spores settle in tiny sacs of the lungs called alvioli. They can take up to 60 days before beginning to germinate.

FLU
Starts as a coldlike condition with fever and chest pains that can lead to breathing problems, shock, coma and death.

ATTACKS LUNGS
Anthrax bacteria multiply, releasing toxins that cause bleeding and deterioration of the central chest cavity.

FROM LUNGS
Immune cells sent to consume microbes transport some back to lymph nodes. 90% Fatality rate.
GI Tract
A rare variety that can strike the upper or lower reaches of the digestive tract, including the throat or gut.

Ingestion
Spores can enter the digestive tract through the undercooked, contaminated meat of goats, sheep, cows and other animals.

Stomach Pain
Can include nausea, vomiting, fatigue, loss of appetite and fever, followed by severe cramps and bloody diarrhea.

Attacks Gut
Bacteria and toxins eat away at intestinal lining, spreading to nearby tissue and prompting an immune-cell attack.

From Intestines
Immune cells carry microbes to lymph nodes.

25% to 60% Fatality rate
Anthrax update

- Testing suspicious powders

1. Powder is visually inspected. Anthrax usually appears in a very fine powder.
• Testing suspicious powders

2. The powder is placed in a small vial with water. Anthrax spores disperse, making a milky solution. If powder sinks or floats, it is likely not anthrax.
• Testing suspicious powders

3. The acidity is tested. If the powder in water is very acidic or very basic, it is not anthrax.
• Testing suspicious powders

4. Workers then use a chemical or test strip to see if the substance is an oxidizer. If the powder oxidizes, or causes the chemical or strip to change color, it is not anthrax.
• Testing suspicious powders

5. A drop of water containing powder is placed on a test strip containing specific antibodies for detecting anthrax. Similar to a pregnancy test, two red lines will show up if it is possibly anthrax.
• Testing possibly exposed individuals

1. Nasal swabs are sent to public health lab for further analysis. In suspected cases of cutaneous anthrax, a biopsy is sent.
• Testing possibly exposed individuals

2. Samples are placed in petri dishes and incubated for 1 to 3 days.
• Testing possibly exposed individuals

3. Anthrax has a distinctive boxcar shape under the microscope. Special dyes will also bind to it and color it.
• Testing possibly exposed individuals

4. Antibody proteins can be used to see if they bind to it, further indication that it is anthrax.
• Testing possibly exposed individuals

5. The ultimate confirmation comes from DNA analysis.
Other threats

- In city of 500,000 residents
- Also smallpox

Deadly Scenarios

Estimates of casualties from hypothetical biological attacks:

<table>
<thead>
<tr>
<th>AGENT</th>
<th>CASUALTIES</th>
<th>DEATHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthrax</td>
<td>125,000</td>
<td>95,000</td>
</tr>
<tr>
<td>Tularemia</td>
<td>125,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Typhus</td>
<td>85,000</td>
<td>19,000</td>
</tr>
<tr>
<td>Tick-borne encephalitis</td>
<td>35,000</td>
<td>9,500</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>125,000</td>
<td>500</td>
</tr>
<tr>
<td>Rift Valley fever</td>
<td>35,000</td>
<td>400</td>
</tr>
<tr>
<td>Q fever</td>
<td>125,000</td>
<td>150</td>
</tr>
</tbody>
</table>
Pathogens of meningitis

Comparisons of infection by
Haemophilus influenzae vs.
Neisseria meningitidis

According to Age Group, 1996

- **Haemophilus influenzae**
- **Neisseria meningitidis**

Reported Cases

<table>
<thead>
<tr>
<th>Age Group (Years)</th>
<th><1</th>
<th>1-4</th>
<th>5-9</th>
<th>10-14</th>
<th>15-19</th>
<th>20-29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>60+</th>
<th>Age not stated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Graph showing the distribution of reported cases of meningitis by age group, comparing *Haemophilus influenzae* and *Neisseria meningitidis*. The highest reported cases are seen in the 1-4 and 20-29 age groups, with a notable increase in cases for *Neisseria meningitidis* in the 50-59 age group.
Neisseria meningitidis: meningococcal meningitis

- gram - diplococcus
- “the meningococcus”
- healthy carriers
- droplet transmission
meningococcus

- sudden onset: fever, intense headache, stiff neck, nausea, petechial rash
- Petechial rash = intradermal hemorrhages
- delirium, coma
- need for prompt treatment
- Meningococcal Conjugate Vaccine (MCV4)
 - Minimum age = 2 years (as of 2011)
N. meningitidis

• fatal case
Haemophilus influenzae, type B (HIB)

- gram - bacillus
- also causes various local infections, bacteremia, pneumonia
- routine infant immunization
HIB in cerebrospinal fluid (meningitis)
HIB in sputum (pneumonia)
Helicobacter pylori

- See pp. 718-720 + figure 25.13 in your textbook 10th ed.

- Organisms survive the acidity of stomach juices by producing a powerful urease. Upon reaching the layer of mucus, they penetrate to the epithelial surface, where bacterial products incite an inflammatory response. Thinning of the mucus layer occurs, and 10% to 20% of infected individuals develop ulcerations. Only a small percentage develop cancer, but more than 90% of individuals with stomach cancers are infected with this bacterium.