Chapter 11  Infinite Sequences and Series

Section 11.1 Sequences

Def: A sequence can be thought as « ritten in a definite order;
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Def: An infinite sequence (or sequence) of numbers is a function whose domain is the set of

integers greater than or equal to some integer;g%)\-j
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Ex:  List the first 4 terms of the following sequences:
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General formula of a sequence:
Ex:  Put the following sequence into its general formula
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Ex:  Recursive Formula: (Fibonacci Sequence)

{a,}={1,1,2,3,5,8,13,21,...}
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Limit ;f a sequence:. where does a sequence go to? i.e. what is the number (only one ) that a
ence will be eventually approaches to.

Def: A sequence {a, }has the limit L and we writ If we can make the terms a, as
n—00

close to L as we like by taking n sufficiently large. If lima, exists, we say the sequence

n—0

converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent)

A more precise version of limit:
A sequence {a, } has the limit L and we write lima, = L if for every £>0 there is a

n—0
corresponding integer N such that |an - L| < & whenever n>N. /
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Def:  Diverges to Infinity:
The sequence {an } diverges to infinity if for every number M there is an integer N such

that for all n larger than N, a, > n. If this condition holds we wrig€ lim a, =
n—>®0
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Theorem I: lima, = 4; limb, =B
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Squeeze Theorem : ‘S b, Sé ?for n>n, and 11 r@ L,then limb, =L -
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Theorem 3: Let {a, }be a sequence of real numbers. If And if fis a function that is
continuous at L and defined at all a, ,then f, @ — f(L)
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Theorem 4:  Suppose that f(x)is a function defined for all x > x,and that {a,, }is a sequence
of real numbers such that f(n)=a, for all n>n,. Then
lim f(x)=L = lima, = L
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Ex:  Evaluate the limit of the following sequences:
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Note:

Theorem:

T.

Sol:

For what values of r is the sequence {r” }convergence?

wif r>1
limr" =41lifr=1 Demonstrate this by plotting point for n.
0if0<r<l

The sequence {r” }is convergent if —1 < 7 <1and divergent for all other values of
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Monotone and Bounded Sequences:

Def.

Let {a, }be a sequence of real numbers.

forall n>1
forall n>1

The sequence is bounded above if there is a number M such that a, <M

forall n>1
The sequence is bounded below if there is a number m such that a, > M

forall n>1

The sequence is monotone increasing if a, < a

n+l

The sequence is monotone decreasing if a, > a

n+l

(If a sequence is bounded above and bounded below, we say that the sequence is bounded. If a
sequence is not bounded, we say that it is unbounded.)

Ex:

a)

For positive integer n, leta, =+/n* +n* —n*. Show that the sequence {a, }is
monotone increasing and unbounded.
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b) Let{a, }= {(_ ) } . Show that the sequence {a, }is bounded but not monotone.

c)

d)

3 . .
Show that the sequence a, = . is monotone decreasing.
n+

Show that the sequence a, =

1s monotone decreasing.
n-+1
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3
n+5

9 {an}:{

} => it’s monotone decreasing.

The Monotone Sequence Theorem: Let {a, }be a monotone increasing sequence of real

numbers.
a)  if {a, }is bounded above, then lima, exists.
b)  if {a, }is not bounded above, then lima, = o

n—o0
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Ex:

Define a sequence {a, | by the recursion relationshipa, =1; a

that the sequence converges and find its limit.

n+tl —

2a, forn>1. Show
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Ex:

Investigate the sequence {a, }defined by the recursive definition

a, =2;a

n+l

:%(an +6) forn=1,2,3,..
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