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   Series 
Def: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Partial Sum: 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Def: Given a series∑
∞

=1n
na , let ∑

=

=++++=
n

i
inn aaaaaS

1
321 ..... be the nth partial sum of the 

series.  If the sequence { }∞=1nnS  is convergent and SSnn
=

∞→
lim  exists as a real number, then the 

series ∑
∞

=1n
na is called convergent and we write  

Sa
n

n =∑
∞

=1

, the number S is called the sum of the series.  Otherwise, the series is called divergent. 
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Geometric Series ∑
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Ex: Evaluate the following: 
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Ex: Determine equivalent fraction: 
 5.23  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Def: A telescoping series is one in which the nth term can be expressed in the form 
 1+−= nnn bba  
 
 
Convergence of a telescoping series: 

If ∑
∞

=1n
na is a telescoping series with 1n n na b b += − then ∑

∞

=1n
na converges if and only if the sequence 

{ }nb converges.  Furthermore, if { }nb converges to L, then ∑
∞

=1n
na converges to L  
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Ex: Find the sum of the following: 
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 c) 2
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4 3n n n

∞

= + +∑  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem: If the series ∑
∞

=1n
na is convergent, then 0lim =

∞→ nn
a  

 

The test for Divergence:  If nn
a

∞→
lim does not exist or if 0lim ≠

∞→ nn
a then ∑

∞

=1n
na is divergent. 

Ex: Show that the following series is divergent. 
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Theorem: If ∑
∞

=1n
na and ∑

∞

=1n
nb are convergent series, then so are the series 

  ∑
∞

=1n
nca     and    ( )∑

∞

=

±
1n

nn ba  

Ex: Find the sum of the series  
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  The Integral Test and Estimates of Sums 
 

Given a series 
1

n
n
a

∞

=
∑ and consider ( ) ( ). .xf x a i e replaced nby x=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          

 

 

 

 

 

 

 

  Case I        Case II 

Introducing the test be given a series ∑
∞

=1n
na and define a function ( ) nanf =  

Case I:   ∫∑
∞∞

=

≤
 

1 
1

)( dxxfa
n

n Î If ( )∫
∞ 

1 
dxxf is convergent, then ∑

∞

=1n
na is convergent. 

 

Case II:  ∫∑
∞∞

=

≥
 

1 
1

)( dxxfa
n

n Î ( )∫
∞ 

1 
dxxf is divergent, and then ∑

∞

=1n
na is divergent. 

 
The Integral Test:  Let { }∞=1nna be a sequence of positive numbers.  Suppose that ( )nfan = , 
where f is continuous, positive, decreasing function of x for all Nx ≥ for some positive integer 

N.  Then the series ∑
∞

=1n
na and ( )∫

∞ 

N 
dxxf both converge or both diverge. 
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Review p – test theorem: 
 
 
 
 
 
Ex: Determine whether the following series is convergent or divergent. 

 a) ∑
∞

=1

1
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 b) 
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lnn n n
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P – test for series ∑
∞

=1

1
n

pn
convergent 

Sol: Let ( ) ∫
∞

⇒=
 

1 

11 dx
xx

xf pp is convergent if 1>p and it’s divergent if 1≤p  

   The p-series ∑
∞

=1

1
n

pn
is convergent if 1>p and it’s divergent if 1≤p  
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Ex: Determine whether the following series is convergent or divergent. 

 a) 
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∞
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Estimate the sum of a series: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remainder Estimate for the integral test: 
 
Suppose ( ) nanf = , where f is continuous, positive, decreasing function for nx ≥ and 

  ∑
∞

=1n
na is convergent.  If nn SSR −= , then ( ) ( )∫∫

∞∞

+
≤≤

 

n 

 

1n 
dxxfRdxxf n  

 
 

Ex: a) Approximate the sum of the series ∑
∞

=1
3

1
n n

by using the sum of the first 10 terms.   

  Estimate the error involved in this approximation. 
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b) How many terms are required to ensure that the sum is accurate to within 0.0005? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex: Determine how many terms are needed to ensure the error within 0.005. 
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