Chapter 11  Infinite Sequences and Series

Section 11.1 Sequences

Def: A sequence can be thought as a list of numbers written in a definite order;
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Def: An infinite sequence (or sequence) of numbers is a function whose domain is the set of
integers greater than or equal to some integer n.

Notation: 2 f(n
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Ex: [List the first 4 terms)of the following sequences:
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General formula of a sequence:
Ex: {ut the following sequence into its general formula
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Ex:  Recursive Formula: (Fibonacci Sequence)

{a,}=1{1,1,2,3,5,8,13,21,..)
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Limit of a sequence: yhere does a sequence go to? i.e. what is the number (only one ) that a
sequence will be eyerftually approachesto.—

Def: A sequence {a, }has thnd we writelima, = L. If we can make the terms a, as
n—00

—

close to L as we like by taking n sufficiently large. If lima, exists, we say the sequence

n—0

converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent)

A more precise version of limit:
A sequence {a, } has the limit L and we write lima, = L if for every £>0 there is a

n—0

corresponding integer N such that |an - L| < & whenever n>N.
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Def:  Diverges to Infinity:
The sequence {an } diverges to infinity if for every number M there is an integer N such

that for all n larger than N, a4, > n. If this condition holds we write lima, =

n—>0

Theorem I: lima, = 4; limb, =B
n—>0 n—>0 —

a) lim(a,+b,)=A+B; S
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b) lim (anbn ) AB; /
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Squeeze Theorem : [a \<b, for n>n, and lirnO— lml@? L, then limb, =L e
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Theorem 3:  Let {a, }be a sequence of real numbers. I a —> L andif fisa funct1on that is

L
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Theorem 4:  Suppose that f ( )1s a function defined for all x > x,and that 1s a sequence
of real numbers such that f(n)=a, for all n>n,. Then
lim f(x)=L = lima, = L

X—>0 n—>0

continuous at L and defined at all q,,, th f

Theorem 3: If lim f(x)= L and f(n) = a, , when n is an integer, then lima, = L

X—>®0 n—0
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Ex:  Evaluate the limit of the following sequences:
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Note: For what values of r is the sequence {r” }convergence?

wif r>1
lif r =

Sol: limr"

n—>0

Demonstrate this by plotting point for n.

0i{0<r<1
1« r<
Theorem: The sequence {r” }is convergent if —1 < r <1and divergent for all other values of
r.
) 1 ifr=1
limr" = .
n— 0 if-1<r<1

Monotone and Bounded Sequences:
Def: Let {an }be a sequence of real numbers.

forall n>1

forall n>1

- The sequence is bounded above if there is a number M such that a, <M
forall n>1

- The sequence is bounded below if there is a number m such that a, > M

forall n>1
(If a sequence is bounded above and bounded below, we say that the sequence is bounded. If a
sequence is not bounded, we say that it is unbounded.)

- The sequence is monotone increasing if a, < a

n+l

- The sequence is monotone decreasing if a, > a

n+l

Ex: a) For positive integer n, leta, =+/n* +n* —n*. Show that the sequence {a, }is

monotone increasing and unbounded.
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C) Show that the sequence a, = 3 . is monotone decreasing.
n+
d) Show that the sequence a, = zn 1s monotone decreasing.

n-+1
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n+5

9 {an}:{

} => it’s monotone decreasing.

The Monotone Sequence Theorem: Let {a, }be a monotone increasing sequence of real

numbers.
a)  if {a, }is bounded above, then lima, exists.
b)  if {a, }is not bounded above, then lima, = o

n—o0
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Ex:

Define a sequence {a, | by the recursion relationshipa, =1; a

that the sequence converges and find its limit.

n+tl —

2a, forn>1. Show
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Ex:

Investigate the sequence {a, }defined by the recursive definition

a, =2;a

n+l

:%(an +6) forn=1,2,3,..
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