Chapter 5 Spring / Mass Systems:
Oscillations of a Mechanical System
Spring/Mass Systems:

Free Undamped Motion. % g
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Hooke’s Law: F = - k >(

DE of Free Undamped Motion: (Harmonic motion)
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Mathematical Formulation
Statement of the problem: A mass o@cilograms is attached to the end of a spring whose
natural length is /,. At t=0, the mass is displaced a distancq L Jmeters from its equ111br1um

posmon and released with a velocity v, meters/second. We wish to determine th hat

governs the resulting motion.

Hook’s Law: F, =—kx )< (4‘_)

At equilibrium position: F, = F, L
vV, o

G-

mg: ~kx= — k[,

maqm#'-ozo
At time t = 0. 7(: _k(x)

S
In motion, we have the following forces acting on the mass. G j
L Fmg .- Q(&u} )
: - —k S V4

S

sy 2 F= —k[L, + y(t)]Where y(¢)is the displacement from its equilibrium position at time t.

-

) 3. A damping force F, . In general, the motion will be damped due, for example, to air

resistance, or an external damping system, such as a dashpot. We assume that any
damping forces that are present are directly proportional to the velocity of the mass.

Fd:__‘f

’ﬁ 4. Any external driving forces@at are present. For example, the top of the spring or
the mass itself may be subjectedt0 an external force.

-~

So the total force acting on the system will be the sum of the preceding forces. Thus, using
Newton’s second law, the DE governing the motion of the mass is

, @Fd +F(t):mg—k(L0+y)—c%+F(t)
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—+ ky = lF (t ith the initial condition y(O) =¥y y'(O) =V,
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Free Oscillations of a Mechanical System

We first ¢onsider the case when there are no external forces acting on the system, and then we
c k

YV'+—y+—y=0 \/
m~-  m

10)=yy:'(0)=v,

have the following homogeneous DE.

Case I: Simple Harmonic Motion: There is no damping i.e. when ¢ = 0.

k k k
vy =y 0=y =y =0, ler a* === y"+ @’y =0
m-| m _m m _
subject to y(O)Zyo; J/'(O):Vo
/

Sol:  The characteristic polynomial: y"+@°y =0

p(A)=A+@’ =0=> A =+wi= y(t)=C, cos(at)+C, sin ()

W(0)=C =y, v

)=
y(t)=Acos(wt)+ Bsin(wt) =1 y'(t)=-aC,sin(w@t)+w@C, cos(at)

:y'(O)szzzvozszv—o /
@

Solutionﬁy(l) =, cos(wt)+v—°sin(wt) v
@
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ExI: A mass weighing 2 pounds stretches a spring 6 inches. At ¢ = 0 the mass is released from

a point 8 inches below the equilibrium position with an upward velocity of % ft/sec.

Determine the equation of free motion.
Sol:

7 /—4- = j(;D: Y,
[ *md T 4=,

o damgi .—frf‘ce I/ ﬁ —
Fer %)//\\//0 &ﬁdrﬁf%?& q 7 md

Convert the solution&yf: ¥, cos(a@t)+ 20 sin (z@in‘[o Phase — Amplitude form:
@

y(t)= Acos(wt - &)
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Ex: Let y"+y— / (\]C)\M \

2 - A T v,
(N = A+ 1=0 >/




crosses the equilibrium position for the first time.
C) Find the maximum speed of The mass.
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Ex: A mass éf 1 kg §t’r@cches a spring 9.8 cm. Leenote the equilibrium position of the
mass afte attached to the spring. Supposetirat the spring acts linearly if it is not
stretched or compressed more than 1 m from its length before the mass is attached. If the
spring stretchies more than this amdunt, then it no longer obeys Hooke’s law (that is, the

spring is deformed if it stretches too much). “Ignore friction and air resistance. Consider
the following questions:

1. Use Newton’s laws to derive a differential equation that describes the motion.

2. What is the period of the motion?

3. The spring is stretched to an initial position y(0)= y,and released with zero
initial velocity. For what values of y, will the spring not be stretch so much that
it deforms?

4. The spring is pushed from the equilibrium position with initial velocityv,. For
what values of v, will the spring not be damaged?

Solution:

1. The gravitational force on the mass (that is, its weight) is @ =9.8N , which
exactly balances the restoring force of the spring when the mass is at rest at the
equilibrium position. The mass stretches the spring by 0.098m, so the spring
constant isk =9.8N/0.098m =100N /m . Friction is negligible, so the restoring
force of he spring equals the weight ofhe-mass. Therefore,

2. The general solution is y(t) = ¢, cos10z + ¢, sin10¢, thus the period of the motion
is 27 /10sec. —_—

3. We substitute the initial values, we have:

y (0) = Cl =)o

£) = y, cos 10z
y'(0)=10C2=O:>C2=O:>y() yocos(101)

Hence, the maximum displacement of the mass is y,meters from the

equilibrium. To avoid damaging the spring, we must not stretch it more than 1 m
from its initial length before the mass is attached. The mass stretches the spring
when it is attached; in this case, the equilibrium position y = 0 corresponds to an

elongation of 0.098m. Thus the spring is not damage if |y,| <1-0.098 =0.902m

4. The spring is pushed from the equilibrium point: y(0)=0; »'(0)=v,
y(O) =C =0
y(t)=C, cos10t+C,sin10t = v,

y'(0)=10C, =v, = G, =2

Solution: y(7)= ;—gsin(IOt)
The initial conditions implyc, = 0; ¢, =v,/10. The maximum amplitude of the

spring is v, /10m. The spring is undamaged if |v0 / 10| <1-0.098, that is
|v0| <9.02m/s
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+——+—x=0; y(0)=y,; »'(0)=v,

L e k ——+—\/c —4mk
p(A)=A+—A+—=0=> 1=
m m 2

2

a Overdamped: ¢* —4km > 0 < > 1 = (Two distinct real roots
__— 2 ped: ¢ — dkm ( )
2
— b) Critically damped if ¢* —4km =0 < 4Ck =1 = (Repeated real root)
—_— m —

2

¢  Underdamped if ¢> —4km <0 < -
T TR bkm

< 1= (Two complex conjugate roots)

Overdamped: When we have two distinct roots, say A4, and A, , then we clearly see that the
complement solutions of the DE, is y(7)=Ce™ + C,e™

Ex: A mass spring obey the DE: % @dy +@y = O;
4 t

a) Determine he thass reaches its extremum and find its extreme value(s).
b) Does the mass cross the equilibrium position.
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Ex:  Let the motion of a linear pendulum be governed by the equation: y"+4y'+3y =0; /

a)  Suppose the pendulum initially is at the equilibrium position, that i
and that y'(0)=v, # 0. Does the pendulum ever cross the equilibrium? Explain

why or wa not.
qj(%>: A" ant20 Ot ‘\Q\TBB"D ~=ThT j(?)?” CﬁcC
— \
— / _
a C'e)" C( < X C'Z_e;(t kj Coj \/ ~20,= Vo c\@[— —'i,/o)
St _Jvye — L
(6~ ”;LVD‘Q’ Ty e Q=Y
F)/ Suppose'/y-(O) =1. Show that the pendulum crosses the equilibrium once if
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Are there any initial condltlons for which the pendulum crosses the equilibrium

position exactly twice. Explain why or why not?
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Critically Damped Motion

+——+—x=0; y(O) Vo y =v

ExI: An 8 —pound weight stretches a spring 2 ft. Assummg that a damping force numerically

equal to 2tifmes the insta system, determine the equation of

motion if the weight igreleased from the equilibrium positionywith an upward velocity of
3 ft/sec. -

w:m /> = Lok




Ex:  Consider the IVP:  y"+y'+ %x =0; y(O)@y'(O) 29)) Y
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Note: The motion of a critically damped pendulum is similar to that of an Overdamped
pendulum. In particular.

1. The bob does not oscillate around the equilibrium (x = 0) position;
2. As t — o, the bob tends to the equilibrium position; and
3. The bob crosses the equilibrium position at most once.

It is difficult in practice to achieve critical damping, because the relation ¢ = 4m” gl must be

satisfied precisely. Even if we assume that the frictional forces are perfectly proportional to the
current angular velocity of the pendulum, any error in measuring the mass or the length of the
pendulum means that we are likely to be in the Overdamped or underdamped case.
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Underdamped:

@ ma T /o
N —
p(2)=2 +£/1+£=O:>/1= " m_—c+ ¢’ —4mk ; ¢t —4mk <0
m m 2 2m —
= A=atbi=y(t)=e (C cos(bt)+C sin (bt ))
— —

Ex:  Solve 9y"+30y'+29y=0; y(0)=1; y'(0)

pO)= Ty + 200420 =0

(BN 4 2B)S+ 2544 =

jennl) + 36009 |

f
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The Phase-Amplitude Formulation of Underdamped Solutions
We know that the solution for an underdamped is

A= ai@i = y(t)=e" (C cos(bt)+C, sm(bt))
We want to rewrite y( ) @ cos bt @) where b and 6 can be computed from the

initial conditions as before.

o If a # 0then the equation is not periodic. Although the cosine function is periodic
with period 27 /b, so we have that

® y(t'i_z?ﬂ-j _ Aea(t+27z/b) COS£b£t+27”j_5j Ae"e 2an/b cos(bt—&) _ eza,,/by(t)

whichisnot  y(¢);if a#0
o We say that the equation with a # 0 is pseudoperiodic, because it behaves like a
periodic function except that its amplitude is not a constant. The pseudoperiodic is
27 /b, the period of the cosine term.
o Equation may be regarded as a cosine function with an exponentially decaying

amplitude when a < 0. The term s called the envelope. The graph of Ae” and

the graph of — 4e” enclose the graph of y(7)

o Equation allows you to determine by inspection when the mass crosses the
equilibrium; you need only determine the time t for which at — J is odd multiple of
/2

Ex:  Suppose the oscillating curve of x(t@cos(%)
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ExI: Suppose a mass of 80 kg Is attached to a linear spring whose spring constant if 25N/m. If
the force of friction 1s proportional to the current velocity of the mass with a
proportlonahty constant of g/s, then the differential equation governing the motion is

80 y '+25y =0, the mass start@below its equilibrium position with a downward
Tnitial Veloc1ty of 3m/sec. Determine the function describes the motion of the mass.

?0%//’(‘ q_ij/% 25:7;:@ : ') j(o>; 4 W‘j@); >
/
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Ex2: A 16 —pound weight1S attached to 25— foot — long spring: equilibrium the spring

measures 8.2 £ If the weight1s pushed up and refcased from the at a poin above
the equilibtium position; Tind the displacem@nts y(7)if it4s Turther kno at the
surpelinding medium offers assistance numerically equal to half the'instantaneous




Ex: Givena DE: x'"+4x'+8x =0; O,

a) Find the solution in phase — amplitude form.

b) If we think of each equation as describing a linear mass-spring system, determine
how often the mass crosses the equilibrium position.

C) Find the time at which the mass first crosses the equilibrium position.

d) Estimate the time for which |x )|€1/ 10()3
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Osciﬂhtions Wltﬁ ﬁxtema[_ fOfCB.S.' (Spring/Mass Systems: Driven Motion)

Case I: DE of Driven Motion without damping:

2

dtg; +@’y=F,sin Bt; y(0)=0; »'(0)=0 Where Fisa constant and @ # /3

Sol:  The homogeneous solution y, (¢) = ¢, cos@? +c, sinat and the particular solution is
{yp (t) = Acosﬂt+Bsinﬂt}(w2)

{yp '(¢)=—BAsin Bt + B cos ,Bt}(O)
{,"==pAcos pt— f*Bsin p}(1)

A@ - )=0=>4=0b/ca =

cosyt(w’A— B> A)+sin pt(@’B— B°B) = F,sin yt =
@ —p
:y(t)—clcoswt+0251nwt+w ey sin St
= y(0)=c
F F F
:>y'(t)=w02 coszvtjthﬂfi’gzcosﬁt:>x'(0)=zvcz+ZU'ZB_O}/2 =0=c, =—#
F,
= y(t)=——>—~(@sin ft - fBsinwt) p+
y(t) ZU<w2_ﬁ2)(wsmﬂ Bsinat) B

Although the above equation is not defined for y = @ , it is interesting to observe that it’s limiting
value as f# — @ can be obtained by applying L’Hopital’s rule. This limiting process is
analogous to “tuning in” the frequency of the driving force y /27 to the frequency of free

vibrations @ / 27 . Intuitively, we expect that over a length of time we should be able to
substantially increase the amplitudes of vibration. For y = @ we define the solution to be.

i(w sin it — fsinat)

F, (@ sin ft - Bsinwt
- Sl 45 :
pow w(w -p ) y—a (w - )
dp
_ F, lim @t cos Bt —sin wt _F @t cos wt —sin ot
O poa —2af ‘ 2@’
F, . F,
= —sinot ———tcosat
2w 2w
F, F,
Clearly, lim|x(¢) = lim =oofor 1, =%, n=123,..
t—o0 teo 2ZU' 2w o
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Pure Resonance:  Although equation x(7)=——>"—

Ex: y"+

w(m -
for f=o

25x=10cos5t; y(0)=0; y'(0)=1

,32)(

@ sin ft— Bsinwt) is not defined

Sol:  Clearly, for homogeneous part, we have y, (¢) = C, cos 5t +C, sin 5t and particular
{, (t)=t(A4cos(5t)+ Bsin(5¢))} (25)
{3, '(t)= Acos(5t)+ Bsin(5¢) + (=5 Asin (5¢) + 5B cos (5¢))}(0)
{yp "(t)——SAsin(St)+SBcos(St)—5Asin(5t)+SBcos(5t)} |

+1(—25A4cos(51)—25Bsin(5¢))

solution :{

t[(254-254)cos(5t)+(25B—25B)sin(5¢) |
+(5B+5B)cos(5t)+(—-54—54)sin(5¢)

—10B=10=>B=1; -104=0=A4=0

y(t)=y,+y,=C cos5t+C,sin5t +1sin(5¢)

y(0)=0=¢, =0

y'(O):l:czzg

}lecos(St)

L= () :(t+%jsin(5t)

18



Sol:

Let’s now take a look at x"+25x = 11cos 6z; x(0)=0; x'(0)=0

- Although the initial conditions are both zero, the solution is not the zero function. In
contrast, if there is no forcing, then zero initial conditions imply a zero solution.

- Although the oscillations are more complicated than those of the simple sine or
cosine function, the solution is periodic with a period that is slightly larger than 6.

x, (t)=Csin(5t)+C,cos(5¢t); x,(t)=Acos(6t)+ Bsin(6t);

x', (t)= —64sin 6t + 6B cos 6t

x,"(t)=—-364cos 6t —36Bsin 6t

—364cos6t —36Bsin 6 + 25(Acos 6 + Bsin 6¢) = 11cos 6¢
{—36A+25A:11:>—11A:11:>A:—1

= = x(t) = ¢, sin 5¢ + ¢, cos 5¢ — cos 6t
-36B+25B=0=B=0

With the initial conditions we have
x(0)=c,-1=0=c, =1; x'(t) = —5¢, cos 5t — 5c, sin 5¢ — 6sin 6t

x'(0)==5¢, = 0=> ¢, =0 = x(t) = cos 5¢ — cos 6t

xit = cos5¢f —cos &

19



Ex: Interpret and solve the initial-value problem:
1d*y dy 1
——+1.2—=—+2y=5cos(4¢); 0)=—, y'(0)=0

Auirss  ( IV\JU‘/"OQMQ)

- udﬁﬁm‘d )
) — \/lowl I, DN % @\”’W&){V .
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2
d f+2ﬁ+2x =4cost +2sint; x(0)=0; x'(0)=m
dt dt

Where m is constant, the solution will be:  x(t)=(m—2)e™ sin + 2sin?

Ex:  Solve:

Ex:  Let x"+3x+2x =10sin¢; x(0)=—1; x'(0)=1
Sol:  p(A)=2+3r+2=0=>A=-1,-2=x,(1)=Ce" +C,e”™

With initial condition we have the solution: x(7)=4e™ —2¢™ +sinz—3cost.

Note:

- The solution for the above solution may be regarded as the sum of a transient and a
steady-state function. This is a basic characterization of the solutions of damped linear
oscillators with periodic forcing. The transient function consists of those terms that tend
to 0 ast — co. In this case, the transient function is x,(¢)=4e™ —2¢™ and the steady-
state function is x (t) =sin¢ —3cost. In general, the transient part of the solution is the

solution of the homogeneous solution that is of course the solution for the auxiliary
equation.
- The frequency of th steady-state solution is the same as the frequency of the forcing. In other
words, the forcing function and the steady state are periodic with period 2wt

x(e)
I \/ —~ -
/" '\. / \\
/ % \
,_ "1 ) ’- \.
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il / /
/ /
2 /
_/R /
lj
4 Steady state

What if different parts of Steady — State solution has different period.
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Let look at the function f(¢)= 4cos2.8¢ +4cos3¢. The graph of this function as below

0, |

Tl AL
LAl

Now, let’s investigate how to find the period of this function, clearly, the period of this function
contains two periods such as7, =27/2.8 =57/7; and T, =27 /3. Note that the period of a

function satisfies f° (to + s) =f (to ) If s is a positive integer multiple of both 7, and T, the

period of f is the least common multiple of 7} and T,. Therefore, we seek the smallest
positive integers m and n such that

mT, =nT, < m 5 =n 2 <:>5—m:2—n<:>ﬂzﬂz>m:14,n=15:>theperiod
7 3 7 3 n 15

p=14T =15T, =10x
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