1. Scan your work into one single pdf file.
2. Check your file includes every page that you want to turn in.
3. pdf file must be readable (without any shadow or dark spots)
4. This quiz has to be submitted by 7:35pm tomorrow (Thursday 11/5/20)

Show all your work clearly. No Work, No Credit.

1. Solve the following differential equations: (10 pts)

$$
\text { a) } \begin{aligned}
\frac{d y}{d x} & =\frac{e^{2 x-5 y+1}}{e^{y-x-3}} \\
\frac{d y}{d x} & =e^{2 x-5 y+1-y+x+3} \\
\frac{d y}{d x} & =e^{3 x-6 y+4}=e^{3 x+4} \cdot e^{-6 y} \\
\left(\frac{d y}{e^{-6 y}}\right. & =\left(e^{3 x+4} d x\right. \\
\frac{1}{6} e^{6 y} & =\frac{1}{3} e^{3 x+4}+C \\
e^{6 y} & =2 e^{3 x+4}+C \\
y & =\frac{1}{6} \ln \left(2 e^{3 x+4}+C\right)
\end{aligned}
$$

b) $\quad \frac{d y}{d x}=x^{3} y^{2}-5 x y^{2}-3 y^{2} \quad y(1)=-2$

$$
\begin{aligned}
& \frac{d y}{d x}=y^{2}\left(x^{3}-5 x-3\right) \\
&\left(\frac{1}{y^{2}} d y=\right. \\
&-\frac{1}{y}= \frac{1}{4} x^{4}-\frac{5}{2} x^{2}-3 x+C \\
&-\frac{1}{-2}=\frac{1}{4}-\frac{5}{2}-3+C \\
& C=\frac{1}{2}-\frac{1}{4}+\frac{5}{2}+3=\frac{2-1+10+12}{4}=\frac{23}{4} \\
& \Rightarrow-\frac{1}{y}=\frac{1}{4} x^{4}-\frac{5}{2} x^{2}-3 x+\frac{23}{4} \\
& \Rightarrow y=\frac{1}{\frac{1}{4} x^{4}-\frac{5}{2} x^{2}-3 x+\frac{23}{4}}=\frac{-4}{x^{4}-10 x^{2}-12 x+23}
\end{aligned}
$$

2. Sketch with direction by eliminating the parameter. (8 pts)

$$
t=\frac{\pi}{4}
$$

a) $\left\{\begin{array}{l}x=3 \cos (2 t)+1 \\ y=2 \sin (2 t)-1\end{array} ; t \in R\right.$

$$
\begin{gathered}
\cos (2 t)=\frac{x-1}{3} \Rightarrow \cos ^{2}(2 t)=\frac{(x-1)^{2}}{9} \\
\sin (2 t)=\frac{y+1}{2} \Rightarrow\left\{\sin ^{2}(2 t)=\frac{(y+1)^{2}}{4}\right. \\
t=0 \Rightarrow\left\{\begin{array}{l}
x=4=\frac{(x-1)^{2}}{9}+\frac{(y+1)^{2}}{4} \\
y=-1
\end{array} \quad ; t=\frac{\pi}{4} \Rightarrow\left\{\begin{array} { l }
{ x = \frac { 1 } { 2 } } \\
{ y = 1 } \\
{ t = \frac { \pi } { 2 } }
\end{array} \left\{\begin{array}{l}
x=-2 \\
y=-1
\end{array}\right.\right.\right.
\end{gathered}
$$

b) $\left\{\begin{array}{l}x=3 \sin ^{2} t-1 \\ y=2 \cos t+1\end{array} ; t \in R\right.$

$$
\begin{aligned}
& \sin ^{2} t=\frac{x+1}{3} \\
& \cos ^{2} t=\left(\frac{y-1}{2}\right)^{2} \\
& 1=\frac{x+1}{3}+\frac{(y-1)^{2}}{4} \\
& 3=x+1+\frac{3}{4}(y-1)^{2} \\
& x=-\frac{3}{4}(y-1)^{2}+2
\end{aligned} \underbrace{2} .
$$

$$
\begin{aligned}
& x=3 \sin ^{2} t-1 \\
& -1 \leq x \leq 2 . \\
& y=2 \cos t+1 \\
& -1 \leq y \leq 3
\end{aligned}
$$

parabola with vertex: $(2,1)$.

$$
t=0\left\{\begin{array}{l}
x=-1 \\
y=3
\end{array} ; \quad t=\frac{\pi}{2} \Rightarrow\left\{\begin{array}{l}
x=2 \\
y=1
\end{array} ; t=\pi \Rightarrow\left\{\begin{array}{l}
x=-1 \\
y=-1
\end{array}\right.\right.\right.
$$

3. Find equation of tangent line to the curve $\left\{\begin{array}{l}x=-\sqrt{t+3} \\ y=\sqrt{3 t}\end{array}\right.$ at $t=3$.

Also find the value of $\frac{d^{2} y}{d x^{2}}$ at this point. (5pts) $\quad\left\{\begin{array}{l}\text { point: }\end{array}\left\{\begin{array}{l}x=-\sqrt{3+3}=-\sqrt{6} \\ y=\sqrt{9}=3 .\end{array}(-\sqrt{6}, 3)\right.\right.$
Sol: Equation of tangent line \Rightarrow need
$\quad d y / d t=\frac{\sqrt{3} \cdot \frac{1}{2} t^{-1 / 2}}{d x}=-\sqrt{3} \sqrt{\frac{t+3}{t}}=\sqrt{1+3} \quad$ slope $m=\frac{d y / d t}{d x / d t}$.

$$
\begin{gathered}
m=\frac{d y / d t}{d x / d t}=\frac{\sqrt{3} \cdot \frac{1}{2} t^{-1 / 2}}{-\frac{1}{2}(t+3)^{-1 / 2}}=-\sqrt{3} \sqrt{\frac{t+3}{t}}=-\left.\sqrt{3} \sqrt{1+\frac{3}{t}}\right|_{t=3}=-\sqrt{3} \sqrt{4}=-2 \sqrt{3} \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-2 \sqrt{3}(x+\sqrt{6})
\end{gathered}
$$

Ans: $y=-2 \sqrt{3} x-2 \sqrt{18}+3$.

$$
\begin{aligned}
& \frac{d y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left[-\sqrt{3}\left(1+\frac{3}{t}\right)^{1 / 2}\right]}{\sqrt{3} t^{-1 / 2}} \\
&=\frac{\frac{1}{2} \frac{-\sqrt{3}\left(1+\frac{3}{t}\right)^{-1 / 2}\left(-\frac{1}{t^{2}}\right)}{\left(1+\frac{3}{t}\right)^{1 / 2} \cdot t^{2}}}{\sqrt{3} t^{-1 / 2}} \\
&=\frac{1}{2\left(1+\frac{3}{t}\right)^{1 / 2} \cdot t^{3 / 2}} \\
&=\frac{1}{2 \sqrt{t^{3}+3 t^{2}}}=\frac{\left.1+\frac{3}{t}\right) \cdot t^{3}}{1}
\end{aligned}
$$

4. Find arc-length of $\left\{\begin{array}{l}x=\frac{(2 t+1)^{3 / 2}}{3} \\ y=1+\frac{t^{2}}{2}\end{array}\right.$ for $0 \leq t \leq 3 \quad$ (5 pts)
Arc-length: $L=\int d s=\int_{0}^{3} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} d t}\left\{\begin{array}{l}\frac{d x}{d t}=\frac{1}{2}(2 t+1)^{1 / 2} \cdot 2=\sqrt{2 t+1} \\ \frac{d y}{d t}=t\end{array}\right.$

$$
\begin{aligned}
& \left(\frac{d x}{d t}\right)^{2}=2 t+1 \\
& \frac{\left(\frac{d y}{d t}\right)^{2}=t^{2}}{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=t^{2}+2 t+1}=(t+1)^{2} . \\
& \Rightarrow L=\int_{0}^{3} \sqrt{(t+1)^{2}} d t=\int_{0}^{3}(t+1) d t=\frac{1}{2} t^{2}+\left.t\right|_{0} ^{3}=\frac{9}{2}+3=\frac{15}{2}
\end{aligned}
$$

5. Sketch the graph of $r_{1}=5$ and $r_{2}=10 \cos (3 \theta)$ on the same polar coordinate. Then setup integrals for areas of the following: (10 pts)
a) Inside $\mathrm{r} 1 /$ outside r 2
points of intersections:
b) Inside r 2 / outside r 1

$$
\begin{aligned}
r_{1}=r_{2} \Rightarrow 10 \cos (3 \theta) & =5 \\
\cos (3 \theta) & =\frac{1}{2} \Rightarrow 3 \theta=\frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{9}
\end{aligned}
$$

a) Inside r_{1} /outside r_{2}.

b) Inside r_{2} /outside r_{1}.

$$
\text { Area }=6\left[\frac{1}{2} \int_{0}^{\pi / 9}(10 \cos (3 \theta))^{2} d \theta-\frac{1}{2} \int_{0}^{\pi / 9} 5^{2} d \theta\right]
$$

c) Inside both $r_{1} \& r_{2}$.

ALIN/रो $\left.A_{\text {ea }}^{\pi / 9} \frac{1}{2} \int_{0}^{\frac{\pi}{9}} 5^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{9}}^{\frac{\pi}{2}}(10 \cos (3 \theta))^{2} d \theta\right]$
6. Determine the limit of the following sequences: (12 pts)
a) $\left\{a_{n}\right\}=\left\{\frac{\sqrt{3 n^{8}-2 n^{5}+3}}{4 n^{4}+n^{3}+2}\right\}$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\sqrt{3 n^{8}-2 n^{5}+3}}{4 n^{4}+n^{3}+2} \div \frac{n^{4}}{n^{4}}=\lim _{n \rightarrow \infty} \frac{\sqrt{3-\frac{2}{n^{3}}+\frac{3}{n^{8}}}}{4+\frac{1}{n}+\frac{2}{n^{4}}}=\frac{\sqrt{3}}{4}
$$

b) $\quad\left\{b_{n}\right\}=\left\{\frac{(n+2)!}{(n+4)!}\right\}$

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{(n+2)!}{(n+4)!}=\lim _{n \rightarrow \infty} \frac{(n+2)!}{(n+4)(n+3)(n+2)!}=\lim _{n \rightarrow \infty} \frac{1}{(n+4)(n+3)}=0
$$

c) $\quad\left\{c_{n}\right\}=\left\{\left(\frac{3 n-2}{3 n+4}\right)^{3 n+2}\right\} \quad$ Note: $\lim _{x \rightarrow \infty}\left(1+\frac{k}{x}\right)^{x}=e^{k}$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} C_{n}=\lim _{n \rightarrow \infty}\left(\frac{3 n-2}{3 n+4}\right)^{3 n+2}=\lim _{n \rightarrow \infty}\left(\frac{1-\frac{2}{3 n}}{1+\frac{4}{3 n}}\right)^{3 n+2} \\
& \left.=\left[\lim _{n \rightarrow \infty}\left(1-\frac{2}{3 n+4}\right)^{n}\right]_{n \rightarrow \infty}\left(1+\frac{4}{3 n}\right)^{3}\right]^{n}\left(\frac{\lim _{n \rightarrow \infty}\left(\frac{3 n-2}{}\left(\frac{e^{-2 / 3}}{3 n+4}\right)^{4 / 3}\right)^{2}(1)^{2}}{}=\left(\frac{1}{e^{2}}\right)^{3}=\frac{1}{e^{6}}\right. \\
& =
\end{aligned}
$$

d) $\quad\left\{d_{n}\right\}=\left\{\frac{1}{\sqrt{2 n^{2}+1}-\sqrt{2 n^{2}-3 n}}\right\}$

$$
\lim _{n \rightarrow \infty} d_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2 n^{2}+1}-\sqrt{2 n^{2}-3 n}} \cdot \frac{\sqrt{2 n^{2}+1}+\sqrt{2 n^{2}-3 n}}{\sqrt{2 n^{2}+1}+\sqrt{2 n^{2}-3 n}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{\sqrt{2 n^{2}+1}+\sqrt{2 n^{2}-3 n}}{2 n^{2}+1-\left(2 n^{2}-3 n\right)}
$$

$$
=\lim _{n \rightarrow \infty} \frac{\sqrt{2 n^{2}+1}+\sqrt{2 n^{2}-3 n}}{1+3 n} \div \frac{n}{n}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1+3 n}{\frac{\sqrt{2+\frac{1}{n^{2}}}+\sqrt{2-\frac{3}{n}}}{\frac{1}{n}+3}=\frac{\sqrt{2}+\sqrt{2}}{3}=\frac{2 \sqrt{2}}{3}}
$$

