

	Spiral	Elliptical	Irregular
Mass (M sun)	10 ⁹ – 10 ¹¹	10 ⁵ – 10 ¹³	10 ⁸ – 10 ¹⁰
Luminosity (Lsun)	10 ⁸ – 10 ¹⁰	10 ⁵ – 10 ¹¹	10 ⁷ – 10 ⁹
Stellar populations I – metal rich II -metal poor	l in disk Il in halo and bulge	Mostly II some I	Mostly I
Percentage of observed galaxies	77%	20%	3%

A Starburst Galaxy The Cartwheel Galaxy

Bright colors =Young stars Young stars at the outer part of the galaxy may be as result of galactic collision.

This ring-shaped assemblage is the likely result of one galaxy (right) having passed through the middle of the larger one (left). In constellation Sculptor in southern hemisphere.

The discussion of galaxies continues in this lesson continues in this lesson by focusing on a special group of galaxies with very energetic cores called active galaxies. Different types of active galaxies are introduced, from Seyfert galaxies and blazars to quasars. blazars to quasars. How are active galaxies different form standard galaxies that we previously talked about? What are Seyfert galaxies? What are blazars What are quasars?

Redshift velocity Distance Quasars look v/c (Mpc) (10⁹ ly) z like stars but 0 0 0 0.1 0.095 394 1.29 have huge 0.2 0.180 739 2.41 redshifts 0.3 0.257 1040 3.39 0.4 0.324 1310 4.26 0.385 1540 5.02 0.5 2010 6.57 0.75 0.508 2370 7.73 0.600 1 0.724 2860 9.32 3C 48 1.5 0.800 3170 10.3 0.882 3520 11.5 0.923 3710 12.1 0.946 3830 12.5 4040 13.2 0.984 10 Infinit 4190 13.7 1 3C48: z = 0.367 This table assumes a Hubble constant $H_0 = 71$ km/s/Mpc, a matter dens parameter $\Omega_m = 0.27$, and a dark energy density parameter $\Omega_\Lambda = 0.73$ (see Chapter 28). The distance in light-years is equal to the li round time in wave How far is this star like object?

	Found in which	Strength of	Type of emission	Luminosity (Milky Way	
Object	type of galaxy	radio emission	lines in spectrum	(watts)	Galaxy = 1)
Blazar	Elliptical	Strong	Weak (compared to synchrotron emission)	10^{38} to 10^{42}	10 to 105
Radio-loud quasar	Elliptical	Strong	Broad	10^{38} to 10^{42}	10 to 105
Radio galaxy	Elliptical	Strong	Narrow	10^{36} to 10^{38}	0.1 to 10
Radio-quiet quasar	Spiral or elliptical	Weak	Broad	10 ³⁸ to 10 ⁴²	10 to 10 ⁵
Seyfert 1	Spiral	Weak	Broad	1036 to 1038	0.1 to 10
Seyfert 2	Spiral	Weak	Narrow	10 ³⁶ to 10 ³⁸	0.1 to 10
 Quasars of active The ene active ga 	, blazars, a galaxies rgy source a alactic nucle	nd Seyfert at the cent sus (AGN)	and radio gala er of an active	xies are ex galaxy is c	amples alled an

that the region that emits radiation is quite small

