Regulation of Erythrocyte Production

- **Erythropoietin**
 - Secreted by kidney, liver
 - Acts on bone marrow to stimulate production of erythrocytes
 - Increased secretion when less O_2 delivered to kidneys
 - Testosterone also stimulates release of erythropoietin
Leukocytes

- Produced by bone marrow
- Monocytes and many lymphocytes undergo further development outside the bone marrow

<table>
<thead>
<tr>
<th>Erythrocytes</th>
<th>Leukocytes</th>
<th>Platelets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polymorphonuclear granulocytes</td>
<td>Monocytes</td>
</tr>
<tr>
<td></td>
<td>Neutrophils</td>
<td>Eosinophils</td>
</tr>
</tbody>
</table>
Platelets

- Fragments of large cells called megakaryocytes
- Involved in blood clotting
- *Clot formation can not occur without platelets*
Hemostasis

• Prevention of blood loss (stoppage of bleeding)
• Injuries to small vessels (arterioles, capillaries, venules)
• Immediate response to injury is vasoconstriction
 – Reduces flow to the area
 – Presses together the sides of the endothelium
 • Induces stickiness
 • “glues” the endothelium together
• Requires 2 processes
 1. Platelet plug formation
 2. Blood coagulation (clotting)
Formation of a Platelet Plug

1. **Platelet adhesion**
 - Exposed collagen in connective tissue
 - von Willebrand factor
 - Secreted by endothelial cells and platelets

2. **Triggers platelet activation**
 - Release contents of secretory vesicles that act locally

3. **Triggers platelet aggregation**
 - Formation of platelet plug
Platelet Plug Localization

• Adjacent, undamaged endothelial cells release *prostacyclin (PGI₂)*
 – Strong inhibitor of platelet aggregation

• Adjacent, undamaged endothelial cells also release *NO*
 – Vasodilator
 – Inhibits platelet adhesion, activation and aggregation
Blood Coagulation
Clot Formation

• The transformation of blood into a solid gel called a **clot** or **thrombus**
 – Consists mainly of **fibrin**
• Clotting occurs locally around the platelet plug
• Function is to support and reinforce the platelet plug and to solidify blood that remains in the wound channel
Clotting Pathway
Role of Thrombin

• Cascade of events leads to the conversion of prothrombin (plasma protein) to thrombin

• Thrombin catalyzes the split of fibrinogen to loose fibrin
 – Fibrin network then becomes stabilized

• Thrombin also stimulates platelet activation
Clotting Pathway

Vessel damage

Exposure of blood to subendothelial tissue

Inactive plasma protein → Enzyme → Inactive plasma protein

Prothrombin → Enzyme → Thrombin

Thrombin → XIII → XIlla

Fibrinogen → Loose fibrin → Stabilized fibrin

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Clotting Pathway
Role of Platelets

• Clotting can not occur in the absence of platelets
• Activated platelets are essential because several of the cascade reactions take place on the surface of activated platelets
• Activated platelets display specific membrane receptors that bind several of the clotting factors which permits the reactions to occur
Clotting Pathway

- **Intrinsic pathway**
 - Everything necessary for this pathway is in the blood

- **Extrinsic pathway**
 - A cellular element outside the blood is needed
 - **Tissue factor**
 - Not a plasma protein
 - Located on the outer plasma membrane of fibroblasts
Dissolving the Clot
Fibrinolytic System

• A fibrin clot is a temporary fix until the blood vessel is repaired
 • *Plasminogen* is activated to plasmin
 • *Plasmin* digests fibrin which dissolves the clot