CARDIOVASCULAR PHYSIOLOGY: THE HEART
Cardiac Muscle

• Conducting system
 – *Pacemaker cells*
 – 1% of cells make up the conducting system
 – Specialized group of cells which initiate the electrical current which is then conducted throughout the heart

• Myocardial cells (cardiomyocytes)

• Autonomic Innervation
 – Heart Rate
 • Sympathetic and Parasympathetic regulation
 • β_1 receptors (ADRB1), M-ACh receptors
 – Contractility
 • Sympathetic stimulus
 • Effects on stroke volume (SV)
Electrical Synapse

- Impulses travel from cell to cell
- Gap junctions
 - Adjacent cells electrically coupled through a channel
- Examples
 - Smooth and cardiac muscles, brain, and glial cells.
Conducting System of the Heart

- SA node is the pacemaker of the heart
 - Establishes heart rate
 - ANS regulation
- Conduction Sequence:
 - SA node depolarizes
 - Atria depolarize
 - AV node depolarizes
 - Then a 0.1 sec delay
 - Bundle of His depolarizes
 - R/L bundle branches depolarize
 - Purkinje fibers depolarize
 - Ventricles depolarize

Sinus Rhythm: Heartbeat Dance
Electrical Events of the Heart

- **Electrocardiogram (ECG)**
 - Measures the currents generated in the ECF by the changes in many cardiac cells

- **P wave**
 - Atrial depolarization

- **QRS complex**
 - Ventricular depolarization
 - Atrial repolarization

- **T wave**
 - Ventricular repolarization

- **U Wave**
 - Not always present
 - Repolarization of the Purkinje fibers
• Plateau cause by slow VG Ca⁺ channels & Ca⁺ inflow
 • this prolonged state of depolarization results in long period of refractory.
• Long refractory prevents heart from entering tetanus (which is a good thing as heart needs to relax to fill)
AP in Myocardial Cells

- **Plateau Phase**
 - Membrane remains depolarized
 - *L-type Ca\(^2+\) channels*
 - “Long opening” calcium channels
 - Voltage gated
 - Open at > -40 mV
 - Present in the T-Tubules
- RMP = -90 mV
- Threshold = -70 mV

- **Time for myocardial muscle twitch is for a single myocardial cell**
Excitation-Contraction Coupling

Myocardial Cell

1. Action potential enters from adjacent cell.
2. Voltage-gated Ca\(^{2+}\) channels open. Ca\(^{2+}\) enters cell.
3. Ca\(^{2+}\) induces Ca\(^{2+}\) release through ryanodine receptor-channels (RyR).
4. Local release causes Ca\(^{2+}\) spark.
5. Summed Ca\(^{2+}\) sparks create a Ca\(^{2+}\) signal.
6. Ca\(^{2+}\) ions bind to troponin to initiate contraction.
7. Relaxation occurs when Ca\(^{2+}\) unbinds from troponin.
8. Ca\(^{2+}\) is pumped back into the sarcoplasmic reticulum for storage.
9. Ca\(^{2+}\) is exchanged with Na\(^+\).
10. Na\(^+\) gradient is maintained by the Na\(^+\)-K\(^+\)-ATPase.
Excitation-Contraction Coupling
Myocardial Cell

- Ca^{2+} entering through L-type Ca^{2+} channels triggers the release of Ca^{2+} from the ryanodine receptors in the SR
 - *Calcium induced calcium release*
- Cross-bridge cycling occurs
- Contraction ends when:
 - Ca^{2+} is pumped back into the SR by Ca^{2+}/ATPase pumps
 - Ca^{2+} is pumped out of the cell by $\text{Na}^{+}/\text{Ca}^{2+}$ exchangers
AP in Cardiac Pacemaker Cells

- Pacemaker potential
 - Slow depolarization
 - Automaticity (spontaneous, rhythmical)
 - Average heart rate (HR) is 72 beats per minute (bpm)
- \textit{F-type Na}^+ (HCN) channels open when the membrane potential is at negative values
- \textit{T-type Ca}^{2+} channels open briefly
 - Inward Ca^{2+} current
 - Final depolarizing boost to threshold

Nodal Cell RMP = -60 mV
Nodal Cell threshold -40 mV
HCN Channels
F-Type Na⁺ Channels

• Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels
 – Activated by cAMP

• Non-selective voltage gated ion channels
 – Heart, brain

• Creates a “Funny” current
Mechanical Events of the Heart

• **Cardiac Cycle**
 – Repeating sequence of *mechanical* phases that occur when the heart beats causing *pressure* changes which lead to *volume* changes

• **Mechanical Phases**
 – ***Systole***
 • Ventricular contraction which leads to ejection of blood
 – ***Diastole***
 • Ventricular relaxation which leads to filling with blood

• Cardiac cycle lasts 0.8 seconds (*time for the entire ventricle*)
 • 0.3 seconds in systole
 • 0.5 seconds in diastole
Cardiac Cycle
Ventricular Volumes

- **End-diastolic volume (EDV)**
 - Volume in the ventricles at the end of diastole
 - Volume in the ventricles at the end of ventricular relaxation
 - Volume in the ventricles at the end of ventricular filling
 - Average resting volume is 135 mL

- **End-systolic volume (ESV)**
 - Volume in the ventricles at the end of systole
 - Volume in the ventricles at the end of ventricular contraction
 - Volume left in the ventricles after the blood has been ejected from the ventricles
 - Average resting volume is 65 mL
Cardiac Cycle

• Isovolumetric Phase
 – Volume does not change in the ventricle
 – All valves closed

• Volume Change Phase
 – Volume changes
 – 1 set of valves open
 – Ventricular filling
 • AV valves open
 – Ventricular ejection
 • SL valves open
Cardiac Cycle
Systole

• **Isovolumetric Ventricular Contraction**
 – Ventricle contracts
 • Muscle fibers developing tension
 • Muscle fibers do not shorten
 • Increasing pressure inside the ventricles
 – All valves closed
 – No blood ejection
 – Ventricular volume remains the same
Cardiac Cycle
Systole

• **Ventricular Ejection**
 – Pressure in the ventricles exceed pressure in aorta/pulmonary trunk
 – Semilunar valves open
 – Blood forced into aorta/pulmonary trunk
 – Muscle fibers shorten

 – **Stroke volume (SV)**
 • Volume of blood ejected during systole
 • $SV = 135 \text{ mL (EDV)} - 65 \text{ mL (ESV)}$
 • Average SV is 70 mL/beat (0.07 L/beat)
Cardiac Cycle
Diastole

• *Isovolumetric Ventricular Relaxation*
 – Ventricle begins to relax
 – Semilunar valves close
 – AV valves closed
 – No blood entering or leaving the ventricles
 – Ventricular volume remains the same
Cardiac Cycle

Diastole

• **Ventricular Filling**
 – AV valves open
 – Blood flows from atria to ventricles
 – 80% of ventricular filling is passive
 – Atrial contraction occurs at the end of diastole
 • Atrial kick moves the remaining 20% of blood in atria into ventricles
Pressure Changes
Volume Changes
ECG
Heart Sounds

- **Lub**
 - Soft sound
 - Closing of the AV valves
 - Onset of systole

- **Dup**
 - Louder sound
 - Closing of the semilunar valves
 - Onset of diastole
Cardiac Output (CO)

• Volume of blood pumped out of the ventricles expressed as L/min
 – Volume of blood flowing through either the pulmonary or systemic circuit per minute

• CO = HR x SV

• CO = 72 beats/min x 0.07 L/beat

• CO = 5.0 L/min

• Total blood volume is pumped around the circuit once each minute
 – 1,440 per day!
Control of Heart Rate

HR is a variable that determines CO

- 100 BPM without nerve or hormone influence on the SA node
- However, SA node is under constant influence of nerves and hormones
 - Activity of the parasympathetic nerves causes a decrease in heart rate
 - Activity of sympathetic nerves causes an increase in heart rate
Control of Heart Rate

HR is a variable that determines CO

- **Sympathetic stimulation**
 - Increases slope
 - Increases F-type Na\(^+\) channel permeability
 - Faster depolarization

- **Parasympathetic stimulation**
 - Slope decreases
 - Hyperpolarizes plasma membrane of SA node
 - Increases K\(^+\) permeability
Control of Heart Rate

HR is a variable that determines CO

- **Epinephrine**
 - Increases HR
 - Binds to beta-adrenergic receptors in the SA node

- **Heart rate is also sensitive to changes in:**
 - Body Temperature
 - Plasma electrolyte concentrations
 - K^+
 - Ca^{2+}
Control of Stroke Volume

SV is a variable that determines CO

- Ventricles do not completely empty during contraction
- More forceful contraction can produce an increase in SV by causing greater emptying
- 3 main factors
 1. Changes in EDV (*preload*)
 2. Changes in contractility
 3. Changes in *afterload*
 - arterial pressures against which the ventricles pump
 - Increase in total peripheral resistance (TPR)
Starling’s Law of the Heart

Relationship between EDV and SV

- Ventricles contract more forcefully during systole when it has been filled to a greater degree during diastole
- **SV increases as EDV increases**
- **SV is Dependent of EDV**
- Increase in venous return forces an increase in CO by increasing EDV which increases SV
Sympathetic Regulation

- Sympathetic nerves innervate the entire myocardium
- NE and Epi bind to beta-adrenergic receptors to increase *contractility*
 - Increases strength of contraction at any given EDV
 - SV is independent of EDV
 - Leads to an increase in ejection fraction
Ejection Fraction (EF)

- EF quantifies contractility
- EF = SV/EDV
- Under resting conditions, average is between 50–75%
- Increased contractility causes increased EF
Sympathetic Regulation

- Increased sympathetic activity
 - Increases HR without decreasing CO
 - Increases contractility
 - Ventricles contract more forcefully to compensate for the increase in HR
Sympathetic Regulation of Myocardial Contractility

Norepinephrine and Epinephrine bind to β-adrenergic receptors on the cell membrane, activating adenyl cyclase and increasing cAMP levels. cAMP activates a cAMP-dependent protein kinase, which phosphorylates thin filaments, enhancing the interaction between thick and thin filaments. This increases cross-bridge cycling and force generation, leading to an increase in the force and velocity of contraction.

1. Norepinephrine and Epinephrine bind to β-adrenergic receptors.
2. Adenyl cyclase is activated, increasing cAMP levels.
3. Active cAMP-dependent protein kinase is activated.
4. Phosphorylation of thin filaments increases the interaction with thick filaments.
5. Increased cross-bridge cycling leads to force generation.

Intramembrane fluid compartments include DHP receptor and Ryanodine receptor in the sarcoplasmic reticulum.
Control of Cardiac Output Summary

End-diastolic ventricular volume \rightarrow \text{Plasma epinephrine} \rightarrow \text{Cardiac muscle} \rightarrow \text{Cardiac output}

Activity of sympathetic nerves to heart \rightarrow \text{SA node} \rightarrow \text{Cardiac output}

\text{Cardiac output} = \text{Stroke volume} \times \text{Heart rate}