CARDIOVASCULAR PHYSIOLOGY:
THE HEART
Cardiovascular System Overview

• Cardiovascular system components
 – Heart
 – Blood vessels
 – Blood

• Cardiovascular system functions
 – Transportation of substances
 • Respiration
 • Nutrition
 • Excretion
 • Hormones
 – Regulation
 – Protection
Cardiac Muscle

• Characteristics
 – Some cells in the atria secrete a peptide hormone called *atrial natriuretic factor* (ANF)
 • Causes natriuresis
 • Vasodilation

• Conducting system
 – 1% of cells
 – Initiates heartbeat and spreads the impulse throughout the heart

• Innervation

• Blood supply
 – Coronary circulation
Heartbeat Coordination

• SA node is the pacemaker of the heart
 – Initializes depolarization
 – Determines heart rate

• Pathway
 – SA node
 – Across atria, then down
 – AV node
 – Bundle of His
 • R/L bundle branches
 – Purkinje fibers
Sequence of Cardiac Excitation

Atrial excitation:
- Begins
- Complete

Ventricular excitation:
- Begins
- Complete

Ventricular relaxation:

SA node
AV node
Atrial relaxation

Electrocardiogram:
- Time
- Time
- Time
Myocardial Action Potential

- vg Na⁺ channels open (depolarization)
- **L-type Ca^{2+} channels** open
- Membrane remains depolarized
 - Ca^{2+} influx sustains depolarization
 - K⁺ channels remain closed
- vg K⁺ channels open (depolarization)

RMP = -90 mV
Threshold = -60 mV
Nodal Cell Action Potential

- Pacemaker potential
 - Slow depolarization
 - Automaticity (spontaneous, rhythmical)
- Voltage-gated K^+ channels close
- **F-type Na^+ channels** open when the membrane potential is at negative values
- **T-type Ca^{2+} channels** open briefly
 - Inward Ca^{2+} current
 - Final depolarizing boost to threshold
Electrical Events of the Heart

- **Electrocardiogram (ECG)**
 - Measures the currents generated in the ECF by the changes in many cardiac cells

- **P wave**
 - Atrial depolarization

- **QRS complex**
 - Ventricular depolarization
 - Atrial repolarization

- **T wave**
 - Ventricular repolarization
Excitation-Contraction Coupling

- Ca\(^{2+}\) entering through L-type Ca\(^{2+}\) channels triggers the release of more Ca\(^{2+}\) from the ryanodine receptors in the SR
 - *Calcium induced calcium release*

- Cross-bridge cycling occurs

- Contraction ends when Ca\(^{2+}\) is pumped back into the SR by Ca\(^{2+}\)/ATPase pumps and Na\(^+\)/Ca\(^{2+}\) counter-transporters
Refractory Period of the Heart

- Long absolute refractory period prevents tetany
 - Muscle can not be stimulated in time to produce summation
- Absolute refractory period for cardiac muscle is 20-200 ms
 - Skeletal muscle 1-2 ms
Mechanical Events of the Heart

- Cardiac cycle
 - Pressure and volume changes that occur during the cardiac cycle
 - Average heart rate 72 bpm
 - Each cardiac cycle lasts 0.8 s
 - 0.3 s in systole
 - 0.5 s in diastole

- 2 alternating phases
 - **Systole**
 - Ventricular contractions and blood ejection
 - **Diastole**
 - Ventricular relaxation and blood filling
Cardiac Cycle

(a) Systole

- **Isovolumetric ventricular contraction**
- **Ventricular ejection**

<table>
<thead>
<tr>
<th></th>
<th>AV valves:</th>
<th>Aortic and pulmonary valves:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systole</td>
<td>Closed</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Closed</td>
<td></td>
</tr>
</tbody>
</table>

(b) Diastole

- **Isovolumetric ventricular relaxation**
- **Ventricular filling**

<table>
<thead>
<tr>
<th></th>
<th>AV valves:</th>
<th>Aortic and pulmonary valves:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diastole</td>
<td>Closed</td>
<td>Closed</td>
</tr>
<tr>
<td></td>
<td>Open</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Cardiac Cycle
Systole

• *Isovolumetric Ventricular Contraction*
 – Ventricle contracting
 • Muscle fibers developing tension
 • Muscle fibers do not shorten
 • Increasing pressure inside the ventricles
 – All valves closed
 – No blood ejection
 – Ventricular volume remains the same
Cardiac Cycle

Systole

• **Ventricular Ejection**
 – Pressure in the ventricles exceed pressure in aorta/pulmonary trunk
 – Semilunar valves open
 – Blood forced into aorta/pulmonary trunk
 – Muscle fibers shorten

• **Stroke volume (SV)**
 • Volume of blood ejected during systole
 • $SV = 135 \text{ mL} (EDV) - 65 \text{ mL} (ESV)$
 • Average SV is 70 mL/beat (0.07 L/min)
Cardiac Cycle

Diastole

• *Isovolumetric Ventricular Relaxation*
 – Ventrices begin to relax
 – Semilunar valves close
 – AV valves closed
 – No blood entering or leaving the ventricles
 – Ventricular volume remains the same
Cardiac Cycle
Diastole

• **Ventricular Filling**
 – AV valves open
 – Blood flows from atria to ventricles
 – 80% of ventricular filling is passive
 – Atrial contraction occurs at the end of diastole
 • Atrial kick moves the remaining 20% of blood in atria into ventricles
Cardiac Cycle
Volumes

• *End-diastolic volume*
 – *EDV*
 – Volume in the ventricles at the end of diastole

• *End-systolic volume*
 – *ESV*
 – Volume in the ventricles at the end of systole
Pressure Changes

Volume Changes

ECG
Heart Sounds

- **Lub**
 - Soft sound
 - Closing of the AV valves
 - Onset of systole

- **Dup**
 - Louder sound
 - Closing of the semilunar valves
 - Onset of diastole
Cardiac Output (CO)

- Volume of blood pumped out of the ventricles expressed as L/min
 - Volume of blood flowing through either the pulmonary or systemic circuit per minute
- \(\text{CO} = \text{HR} \times \text{SV} \)
- \(\text{CO} = 72 \text{ beats/min} \times 0.07 \text{ L/beat} \)
- \(\text{CO} = 5.0 \text{ L/min} \)
- Total blood volume is pumped around the circuit once each minute
 - 1,440 per day!
Control of Heart Rate

HR is a variable that determines CO

- 100 BPM without nerve or hormone influence on the SA node
- However, SA node is under constant influence of nerves and hormones
 - Activity of the parasympathetic nerves causes a decrease in heart rate
 - Activity of sympathetic nerves causes an increase in heart rate
Control of Heart Rate

HR is a variable that determines CO

- **Sympathetic stimulation**
 - Increases slope
 - Increases F-type Na\(^+\) channel permeability
 - Faster depolarization

- **Parasympathetic stimulation**
 - Slope decreases
 - Hyperpolarizes plasma membrane of SA node
 - Increases K\(^+\) permeability
Control of Heart Rate

HR is a variable that determines CO

- **Epinephrine**
 - Increases HR
 - Binds to beta-adrenergic receptors in the SA node

- **Heart rate is also sensitive to changes in:**
 - Body Temperature
 - Plasma electrolyte concentrations
 - K^+
 - Ca^{2+}
Control of Stroke Volume

SV is a variable that determines CO

• Ventricles do not completely empty during contraction
• More forceful contraction can produce an increase in SV by causing greater emptying
• 3 main factors
 1. Changes in EDV (*preload*)
 2. Changes in contractility
 3. Changes in *afterload*
 • arterial pressures against which the ventricles pump
 • Increase in total peripheral resistance (TPR)
Starling’s Law of the Heart

Relationship between EDV and SV

• Ventricles contract more forcefully during systole when it has been filled to a greater degree during diastole

• **SV increases as EDV increases**

• Increase in venous return forces an increase in CO by increasing EDV which increases SV
Sympathetic Regulation

- Sympathetic nerves innervate the entire myocardium
- NE and Epi bind to beta-adrenergic receptors to increase *contractility*
 - Increases strength of contraction at any given EDV
 - Independent of EDV
 - Leads to an increase in ejection fraction
Ejection Fraction (EF)

- EF quantifies contractility
- EF = SV/EDV
- Under resting conditions, average is between 50–75%
- Increased contractility causes increased EF
Sympathetic Regulation

• Increased sympathetic activity
 – Increases HR without decreasing CO
 – Increases contractility
 – Ventricles contract more forcefully to compensate for the increase in HR
Sympathetic Regulation of Myocardial Contractility
Control of Cardiac Output Summary

Begin

End-diastolic ventricular volume

Activity of sympathetic nerves to heart

Activity of parasympathetic nerves to heart

Plasma epinephrine

Cardiac muscle

SA node

Cardiac output = Stroke volume x Heart rate