Respiratory Physiology
Unit 4

Respiratory Physiology
Respiration

- **External respiration**
 - ventilation
 - gas exchange

- **Internal respiration**
 - cellular respiration
 - gas exchange

- **Respiratory Cycle**
 - Inspiration
 - Moving atmospheric air into the lungs
 - Expiration
 - Moving air out of the lungs
Lungs vs. Balloons

- A lung is similar to a balloon in that it resists stretch, tending to collapse almost totally unless held inflated by a pressure difference between its inside and outside.
- Lungs *and* the chest have elastic properties.
Lung Compliance

- **Compliance**
 - Elasticity
 - Tendency to recoil
 - Tendency of an elastic structure to oppose stretching or distortion
 * Resists distension

- **Surface tension**
 * Resists distension

- **Surfactant**
 - Reduces surface tension
 - Increases compliance (makes them easier to stretch)
Airway Resistance

\[F = \frac{\Delta P}{R} \]

- Same variables that affect resistance in blood vessels
 - Tube length, tube radius, friction
 - *Tube radius* most important factor

- Airway resistance is so small that small pressure differences produce large volumes of air flow
 - Average atmosphere-to-alveoli pressure difference is 1 mmHg, but 500 mL of air is moved (*tidal volume*)

- Low pressure and low resistance
 - Pulmonary 1/10th of systemic vascular resistance
Ventilation

- Exchange of air between atmosphere and alveoli
- Atmospheric air pressure is 760 mmHg at sea level
- Air moves by bulk flow
 - \(F = \frac{\Delta P}{R} \)
 - \(F = \frac{P_{alv} - P_{atm}}{R} \)
Boyle’s Law

- Boyle’s law = \(\frac{P}{V} \)
- Pressure of a given quantity of gas is inversely proportional to volume
- An increase in the volume of the container (lungs) decreases the pressure of the gas (air)
Ventilation Mechanics

- Lung volume depends on:
 1. Transpulmonary pressure (P_{tp})
 - Inside to outside of the lung
 - $P_{tp} = P_{alv} - P_{ip}$
 - The force that keeps the lungs inflated
 - Transmural pressure
 - Across the wall
 2. How compliant the lungs are
Transmural Pressures

![Diagram of Transmural Pressures]

Table 13–3 Two Important Transmural Pressures of the Respiratory System

<table>
<thead>
<tr>
<th>Transmural Pressure</th>
<th>(P_i - P_o)</th>
<th>Value at Rest</th>
<th>Explanatory Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpulmonary ((P_{tp}))</td>
<td>(P_{alv} - P_{ip})</td>
<td>(0 - [-4] = 4 \text{ mmHg})</td>
<td>Pressure difference holding lungs open (opposes inward elastic recoil of the lung)</td>
</tr>
<tr>
<td>Chest wall ((P_{cw}))</td>
<td>(P_{ip} - P_{atm})</td>
<td>(-4 - 0 = -4 \text{ mmHg})</td>
<td>Pressure difference holding chest wall in (opposes outward elastic recoil of the chest wall)</td>
</tr>
</tbody>
</table>

\(P \) is pressure inside the structure, and \(P_o \) is pressure surrounding the structure.
What Keeps the Lungs Inflated?

• Elastic recoil of the lungs
 * At rest natural tendency is to **collapse**

• Lungs are held open by the positive P_{tp}
 – At rest exactly opposes elastic recoil
 • Collapsing force of the lungs is 4 mmHg
 • Intrapleural pressure is -4 mmHg

• Elastic recoil of the chest
 * At rest natural tendency is to **expand**
Pneumothorax

• A pierce in the chest wall allows atmospheric air to rush in causing P_{ip} to go from -4 mmHg to 0 mmHg

• Transpulmonary pressure acting to hold the lungs open is eliminated

• Lung collapses

• Chest wall expands
Inspiration/Expiration

- In order for air to move into the lungs, the pressure in the lungs must drop below atmospheric pressure

\[P_{\text{atm}} > P_{\text{alv}} \]

- In order for air to move out of the lungs, the pressure in the lungs must exceed atmospheric pressure

\[P_{\text{alv}} > P_{\text{atm}} \]
The Respiratory Cycle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Partial Pressure of Gases

• *Dalton’s Law*
 – Pressure of each gas is independent of the pressure of other gases
 – Pressure of the gas is directly proportional to its concentration
 – Individual gas pressures in air is termed the partial pressure of a gas
 – Atmospheric air 760 mmHg at sea level
 • Air is 78% nitrogen
 – $0.78 \times 760 \text{ mmHg} = 593 \text{ mmHg}$
 – $P_{N_2} = 593 \text{ mmHg}$
 • Air is 21% oxygen
 – $0.21 \times 760 \text{ mmHg} = 159 \text{ mmHg}$
 – $P_{O_2} = 159 \text{ mmHg}$
 – Altitude and Temperature also affect pressure
Partial Pressure of O_2 and CO_2 in Blood

Table 13–7 Normal Gas Pressure

<table>
<thead>
<tr>
<th></th>
<th>Venous Blood</th>
<th>Arterial Blood</th>
<th>Alveoli</th>
<th>Atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{O_2}</td>
<td>40 mmHg</td>
<td>100 mmHg*</td>
<td>105 mmHg*</td>
<td>160 mmHg</td>
</tr>
<tr>
<td>P_{CO_2}</td>
<td>46 mmHg</td>
<td>40 mmHg</td>
<td>40 mmHg</td>
<td>0.3 mmHg</td>
</tr>
</tbody>
</table>

*The reason that the arterial P_{O_2} and alveolar P_{O_2} are not exactly the same is described later in this chapter.
Transport of O_2 in the Blood

• 1 Liter of blood contains 200 mL of oxygen
 – Dissolved in plasma
 – Bound to hemoglobin (Hb)

• Solubility of O_2 is relatively low
 – Only 3 mL of O_2 can dissolve in 1 L of blood at arterial P_{O_2} of 100 mmHg (2%)
 – Remaining 197 mL of oxygen bound Hb (98%)
Transport of O$_2$ in the Blood

- Hemoglobin
 - Heme, globin
 - 280 million Hb per RBC x 4 = >1 billion molecules of oxygen per RBC
- States of Hb
 - Hb
 - deoxyhemoglobin
 - O$_2$ + Hb \rightleftharpoons HbO$_2$
 - Oxyhemoglobin
- Oxygen carrying-capacity of blood – a %
 - Amount of HbO$_2$ is 80 % of total Hb, the sample is 80% saturated
Oxygen-Hemoglobin Dissociation Curve

- **Sigmoid curve**
 - Each Hb molecule has 4 sub-units
 - Binding cooperativity
 - Binding of first O_2 increases the affinity for O_2 at remaining three heme units

- **Significance of the shape of the curve**
 - Steep slope between 20-60 mmHg
 - Increased unloading
 - Plateau
 - At 60 mmHg, 90% saturation
 - Oxygen reserve
Shifts in the Oxygen-Hemoglobin Dissociation Curve

- Other factors influence the degree of Hb saturation
 - 2,3-diphosphoglycerate (DPG)
 - Temperature
 - pH
 - PCO2

- A shift to the **right** decreases the affinity of Hb for O₂
 - increased unloading in the tissues

- A shift to the **left** increases the affinity of Hb for O₂
 - increased loading in the lungs
Hb Saturation

Effects of DPG Concentration

• 2,3-diphosphoglycerate (DPG)
 – Always produced by RBCs
 – Increase in DPG causes a shift to the right

• RBCs increase production of DPG when there is a decrease in P_{O_2}
 – Higher altitude
 – Anemia
 – Transfer from maternal blood to fetal Hb

• Increased unloading in the tissues to maintain O_2 delivery
Hb Saturation
Effects of Temperature

- Higher temperature in tissue capillary blood than in arterial blood
- The more metabolically active the tissue is, the higher the temperature will be
- Increased unloading in the tissue
 - Provides more metabolically active cells with more O_2
Hb Saturation

Effects of pH

- Higher \([H^+]\) in tissue capillary blood than in arterial blood
 - Elevated \(P_{CO_2}\)
 - Metabolically produced acids such as lactic acid
- The more metabolically active the tissue is, the greater the \([H^+]\)
 - Lower pH
 - Higher acidity
- Increased unloading in the tissue
 - Provides more metabolically active cells with more \(O_2\)
Transport of CO₂ in Blood

- 200 mL CO₂/min produced by metabolism
- 10% dissolved in plasma
- 30% as carbaminohemoglobin (HbCO₂)
 - CO₂ + Hb <--→ HbCO₂
- 60% as bicarbonate (HCO₃⁻)
 - CO₂ + H₂O <--→ H₂CO₃ <--→ HCO₃⁻ + H⁺
 - Carbonic anhydrase
 - Present in RBCs
Chloride Shift
Tissue Level

- **Bicarbonate reaction** shifts to the right... **WHY??**
 - \(\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \)

- **Steps:**
 - \(\text{CO}_2 \) diffuses out of the tissue cells into the blood
 - \(\text{CO}_2 \) moved into the red blood cells
 - \(\text{CO}_2 \) combines with \(\text{H}_2\text{O} \) to produce \(\text{H}_2\text{CO}_3 \)
 - Carbonic anhydrase makes this reaction fast
 - \(\text{H}_2\text{CO}_3 \) dissociates producing \(\text{H}^+ + \text{HCO}_3^- \)
 - \(\text{H}^+ \) buffered by hemoglobin, facilitating the offloading of \(\text{O}_2 \)
 - Forms HHb
 - \(\text{Cl}^- \) moves into the RBC in exchange for \(\text{HCO}_3^- \) moving into plasma
 - **Bohr effect**
 - Increased oxygen unloading in tissues
 - Enhanced transport of \(\text{CO}_2 \)
Chloride Shift
Tissue Level

(a) Oxygen release and carbon dioxide pickup at the tissues

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings.
Reverse Chloride Shift
Pulmonary Capillaries

• Equation shifts to the left.....WHY??
 – \(\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{HCO}_3^- + \text{H}^+ \)

• Steps:
 – Hb oxygenated
 – Hb decrease in affinity for \(\text{H}^+ \)
 – Reverse chloride shift as Cl\(^-\) moves into plasma and HCO\(_3^-\) moves into the RBC
 – \(\text{H}_2\text{CO}_3 \) dissociates to \(\text{CO}_2 + \text{H}_2\text{O} \)
 – \(\text{CO}_2 \) expired out

• Remember:
 – \(\text{H}^+ \) is buffered by Hb in RBC
 – HCO\(_3^-\) goes into the plasma and buffers incoming \(\text{H}^+ \)
Reverse Chloride Shift
Pulmonary Capillaries

(b) Oxygen pickup and carbon dioxide release in the lungs

Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings.
Respiratory Control Centers
Rhythmical Breathing

• Medulla oblongata
 – *Respiratory Rhythmicity Center*
 • Controls the diaphragm and intercostals

• Pons
 – *Apneustic Center*
 • Terminates inspiration
 – *Pneumotaxic Center*
 – Modulates activity of apneustic center
 – Smoothes the transition from inspiration to expiration
 • Cyclic inhibition

• Pulmonary stretch receptors
 – Cut off signal for inspiration to allow expiration to occur
Control of Ventilation

Monitoring P_{O_2}, P_{CO_2}, H^+

- Respiratory rate and tidal volume can be altered
- Peripheral chemoreceptors
 - *Aortic and Carotid bodies*
 - Provides afferent input to the medulla via the Vagus Nerve
 - Sensitive to P_{O_2}
- Central chemoreceptors
 - In the Medulla
 - Highly sensitive to P_{CO_2}
Control of Ventilation
Monitoring P_{O_2}, P_{CO_2}, H^+

• Peripheral chemoreceptors
 – Aortic and Carotid Bodies
 – Sensitive to:
 • Decreased P_{O_2} (hypoxia)
 • Increased H^+ due to the build up of other acids (metabolic acidosis)
 • Increased H^+ due to CO_2 retention (respiratory acidosis)

• Central chemoreceptors
 – Medulla
 – Sensitive to
 • Increased H^+ in brain extracellular fluid (CSF)
 – CO_2 crosses blood brain barrier to stimulate receptors
Protective Reflexes

• Pulmonary irritant reflexes
 – Reflex constriction to prevent particulates from entering lungs
 – Receptors located between airway epithelial cells
 – Cough reflex
 – Sneeze reflex
 – Cessation of breathing reflex
 – Triggered when noxious agents are inhaled
 – Chronic smoking causes loss of this reflex