Cladogram of animals

What is an Animal?

- Multicellular,
- Heterotrophic, eukaryotic organism
- Cells lack cell wall, held together by structural proteins (collagen)
- Contain nervous and muscle tissue
- Most reproduce sexually with a dominant diploid stage

Development

- Zygote (cleavage)
- Morula
- . Blastula
- Gastrula
 - Blastopore
 - Archenteron
 - Two layers of tissue (endoderm & ectoderm)

Animal Phylogeny Overview

- Organization Level
- Body Symmetry
- Body Cavities
- Development
- Segmentation

Group of cells working to perform a function that are separated by membranous layers

Organization Level

- Cellular Level vs. Tissue Level
 - Cellular Level: Porifera (sponges)
 - Tissue Level: all others

(a) Single cell

(b) Two cell layers

Body Symmetry

- Radial vs.
 Bilateral
 - RadialSymmetry:Cnidaria &Ctenophora
 - BilateralSymmetry: all others

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Body Cavities

- _Acoelomates :
 - Platyhelminthes (flatworms)
- Pseudocoelomates:Nematoda(roundworms)
- Coelomates: all others

Development

Protostomes

VS.

Deuterostomes

Protostomes vs. Deuterostomes

- Cleavage
 - Spiral and Determinate
- Coelom Formation
 - Schizocoelous
- Fate of Blastopore
 - Mouth

- Cleavage
 - Radial and Indeterminate
- Coelom Formation
 - Enterocoelous
- Fate of Blastopore
 - Anus

Development

- Protostomes vs. Deuterostomes
 - Protostomes:
 - Mollusca (clams, snails)
 - Annelida (segmented worms)
 - Arthropoda (Crustaceans, insects)
 - Deuterostomes
 Echinodermata

(Seastars)

 Chordata (vertebrates)

Segmentation

- Mollusca (soft unsegmented)
- Annelida (soft segmented)
- Arthropoda (hard – segmented)
- Chordata (segmented)

Tissues

Groups of cells with a common structure and function separated by a membrane

Tissues

Epithelial Tissue

- tightly packed cells used for lining
- (stratified Squamous, Simple Columnar)

Connective Tissue

 cells scattered through an extracellular matrix (Bone, Blood, Cartilage)

Nervous Tissue

transmits signals (neurons)

Muscle Tissue

fibers for contraction (smooth, skeletal, cardiac)

Trochophore

Larva

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Lophophorate

Ecdysis

- Cellular level of organization
- Mostly marine
 - 9000 species (only 100 are freshwater)
- Asymmetrical and Sessile
- Hermaphrodites
- Often live in groups called a "sleeze"

Cellular Level of Organization

_ Choanocyte: flagellated cells

_ Amoebocyte: pseudopodia

Skeleton

- spicules (calcium carbonate or silica)
- spongin (protein)

- Water Movement
 - Asconoid

(flagellated spongocoel)

 ostia - spongocoelosculum

- Water Movement
 - Sycnoid(flagellated radial canals)
 - ostia incurrent canal - prosopyle
 radial canal apopyle spongocoel osculum

- Water Movement
 - Leuconoid

(flagellated chambers)

 ostia - incurrent canal - flagellated chamber excurrent canal osculum

- Class:Calcarea
 - CalciumSpicules
 - asconoid,syconoid,leuconoid

- Class: Hexactinellidae
 - silica spicules
 - syconoid,leuconoid

- Class:Demospongiae
 - silica spiculesand/orSpongin
 - leuconoid

Radial Symmetry

- Includes the phylum: Cnidaria
 - (hydras, jellies, sea anemones, and coral)
- Includes the phylum: Ctenophora
 - (comb jellies)
- Tissue-system level of organization
- Diploblastic
 - Endoderm
 - Ectoderm

Body FormsCnidaria contain two body forms with a gastrovascular cavity Polyp and Medusa

(a) Sea anemone: a polyp

(b) Jelly: a medusa

Cnidocytes

Nematocyst

- thread with barbs

Cnidocil

trigger

@ 1999 Addison Wesley Longman, Inc.

- Class: Hydrozoa
 - (Portuguese man-of-war, Hydra, Obelia)
- Class: Scyphozoa
 - (Jellies)
- Class: Anthozoa
 - (Sea Anemones, Corals, Sea fans, Sea pansies)
- Class: Cubozoa

Hydrozoa

Class: Hydrozoa

- Most are marine
- Most species contain both a polyp and medusa stage
- Polyp stage often colonial
- Reproduction
 - asexual: budding
 - sexual: zygotes and larvae (planula)

Class: Scyphozoa

Class: Scyphozoa

Class: Scyphozoa

- All are marine
- Polyp stage reduced or absent
- Medusa stage is free living
- Common name: sea jellies

Class: Anthozoa

- All are marine
- Polyp stage dominant
- No medusa stage

Class: Cubozoa

- Box Jellies
- Complex eyes embedded in medusa stage
- Sea Wasp –
 venom can kill 60
 people

Class: Anthozoa

Phylum: Ctenophora

- Comb Jellies
- Contain comb plates with cilia
 - largest animal to move with cilia
- Tentacles with <u>Colloblasts</u>
 (adhesive cells)

Phylum: Platyhelminthes

- Flatworms
- Acoelomates
- Gastrovascular Cavities
- Organ-system level of organization
- Triploblastic

Classification

- Class: Turbellaria
 - (Planarians)
- Class: Monogenea
 - (Monogenes one host)
- Class: Trematoda
 - (Flukes)
- Class: Cestoidea
 - (Tapeworms)

Class: Turbellaria

- Free-living and mostly marine
- Cephalization
- Gastrovascular cavity
- Regeneration

Class: Turbellaria

Class: Turbellaria

Class Turbellaria

- Free living
- Protrusible proboscis

Class: Monogenea

- Parasitic (One host)
- Fish parasites

Class: Trematoda

- Endoparasitic flukes
- Two hosts
- Female fits into groove on males body

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Schistosoma

Enters through skin and moves to intestine (Blood Fluke)

invert host - snail (Africa, South America, West India) symptoms: pain, anemia, dysentery

Miracidia Larva

Cercariae Larva

Clonorchis

- enters by eating raw fish and moves to bile ducts (Liver Fluke)
 - invert host snail(China, Asia,Japan)
 - symptoms:cirrhosis of the liver, death

Class: Trematoda

- Swimmer's dermatitis: larvae enters skin
 - larvae in skin, can't complete life cycle in humans

Class: Cestoidea

- Endoparasitic tapeworms
- Body partsProglottids
 - scolex with hooks and suckers

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Taenia saginata

 Beef tapeworms (adult) undercooked beef

Infection by ingestion of undercooked contaminated meat containing the cysticercus larvae.

Taenia solium

Intermediate Host

- Pig -

 Pork tapeworms (adult) undercooked pork

adult tapeworm.

is found in the intermediate host, the pig, and

Man may be infected by ingestion of parasite eggs, or by autoinfection when already harbouring an

man after accidental infection.

Diphyllobothrium latum

- Fish tapeworm (adult)
 - undercooked fish

Dipylidium caninum

- Dog tapeworm (adult)
 - undercooked dog

Echinococcus

- Unilocular hydatid (cyst)
 - association with dogs and ruminants

THE LIFE CYCLE OF ECHINOCOCCUS GRANULOSUS (HYDATID DISEASE OR HYDATIDOSIS)

(Parasites and Parasitological Resources)

Pseudocoelomates

- Includes the Phyla: Rotifera & Nematoda
- False Cavity
 - store nutrients
 - movement
 - hydrostatic skeleton
 - space for organ development

Phylum: Rotifera

- Mostly freshwater
- Ring of cilia around mouth
- Jaws with complete alimentary canal
- Parthenogenesis

Lophophorate Phyla

- P. Ectoprocta (Bryozoans) colonial and moss-like
- P. Phoronids marine tube worms
- P. Brachiopods lamp shells

(b)

Phylum: Nemertea

- Proboscis Worms (ribbon)
 - closed circulatory system
 - complete digestive tract
 - proboscis

Phylum: Nematoda

- Unsegmented, round with tapered ends
- Complete alimentary canal
- decomposers, agricultural pests, parasites

Ancylostoma

Hookworm
 (burrows
 into skin
 and moves
 to
 intestine)

Enterobius

Pinworm

 (pick up
 eggs from
 anus or
 dust with
 eggs)

Ascaris

Human roundworm (pick up eggs in food)

Trichinella

 Trichina worm (pick up from infected muscle in pork)

Wuchereria

- blocks lymph channels
- pick up from mosquitoes

Lymphatic System

earson Benjamin Cummings. All rights reserved.

Wuchereria

 Causes elephantiasis

Dracunuclus

Guinea Worm

