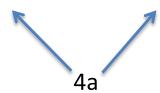
4b. Innate (nonspecific) Immunity

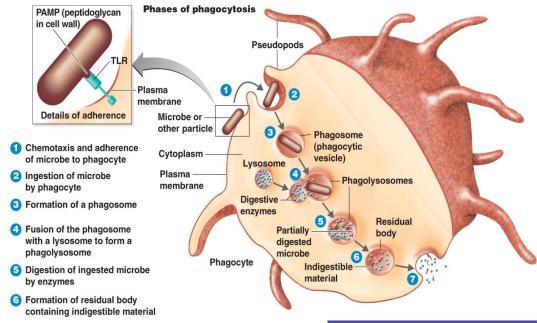

Chapter 16: Innate (nonspecific) Immunity

Some terms:

- Susceptibility: Lack of immunity to a disease.
- Immunity: Ability to ward off disease.
- Innate immunity: Defenses against any pathogen.
 - Does not involve specific recognition of a microbe
 - No memory response
- Adaptive immunity
 - Specific response to a specific microbe once a microbe has breached the innate immunity defenses!
 - Slower to respond but develops memory

An overview of the body's defenses

Innate Immunity		Adaptive Immunity (Chapter 17)
First line of defense	Second line of defense	Third line of defense
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Phagocytes, such as neutrophils, eosinophils, dendritic cells, and macrophages Inflammation Fever Antimicrobial substances 	 Specialized lymphocytes: T cells and B cells Antibodies



The Concept of Innate Immunity

On Your Cells!

- Host Toll-like receptors (TLRs) attach to
- Pathogenassociated molecular patterns (PAMPs)
- TLRs induce cytokines that regulate the intensity and duration of immune responses

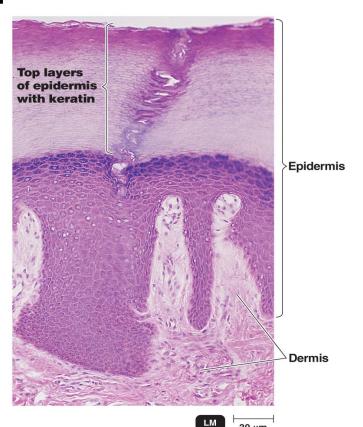
On Pathogen!

Key Concept

Phagocytes migrate to a site of infection and can destroy the infecting bacteria. The phases of phagocytosis are chemotaxis, adherence, ingestion, and digestion.

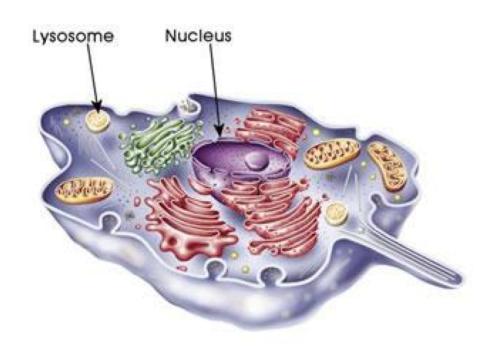
Discharge of waste materials

A. Physical barriers (first line of defense)

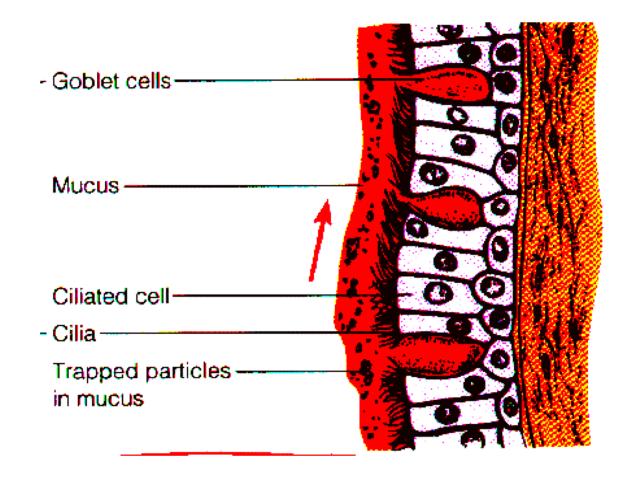

 skin, mucous membranes = prevent entry to most pathogens

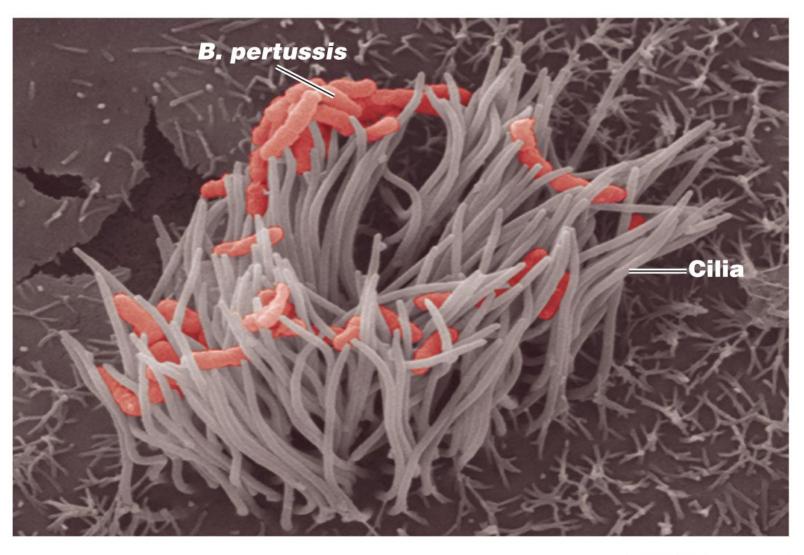
Epidermis consists of tightly packed cells

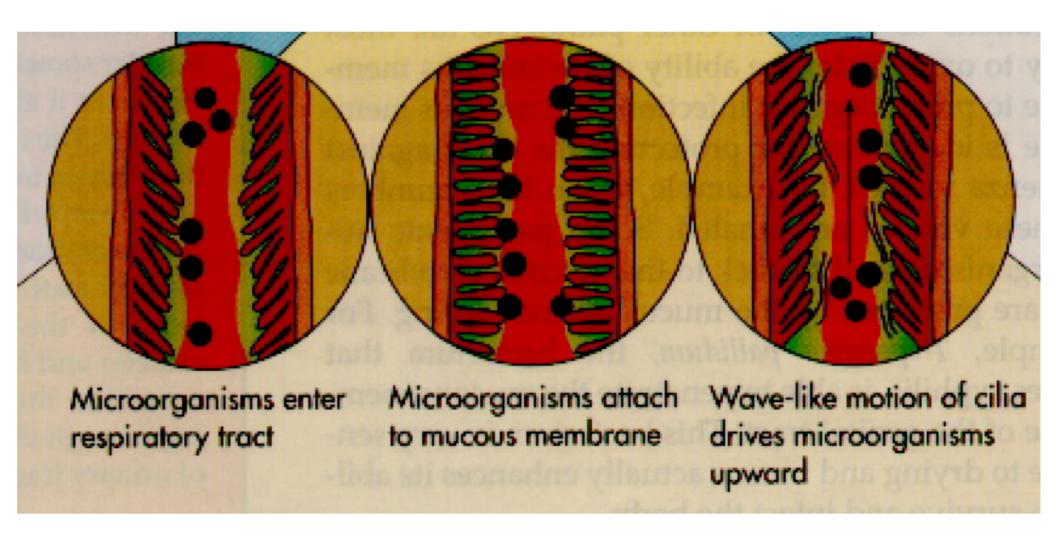
with


Keratin, a protective protein

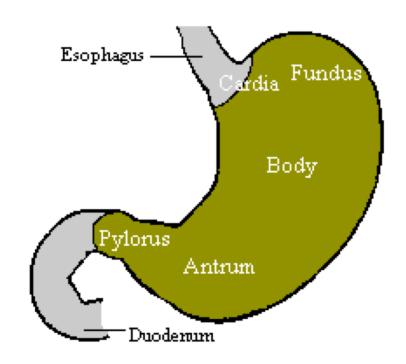
B. Lysozyme

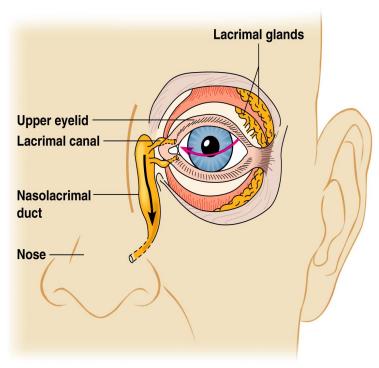

 enzyme in tears, sweat, saliva, etc that dissolves bacterial cell walls (digests peptidoglycan)




C. Respiratory cilia

carry pathogens out of lungs


Respiratory cilia


D. Stomach acid

- HCl at pH 1-2
- kills many, but not all pathogens

Physical factors

- Mucous membranes
- Ciliary escalator:
 Microbes trapped in mucus
 are transported away from
 the lungs.
- Lacrimal apparatus: Washes eye.
- Saliva: Washes microbes off.
- Urine: Flows out.
- Vaginal secretions: Flow out.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Chemical Factors

- Fungistatic fatty acid in sebum
- Low pH (3–5) of skin
- Lysozyme in perspiration, tears, saliva, and urine
- Low pH (1.2–3.0) of gastric juice
- Low pH (3–5) of vaginal secretions

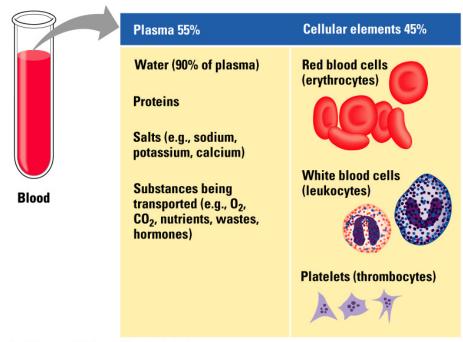
Normal Microbiota and Innate Immunity

- Microbial antagonism/competitive exclusion: Normal microbiota compete with pathogens or alter the environment
- Commensal microbiota: One organism (microbe) benefits and the other (host) is unharmed
 - May be opportunistic pathogens

Innate (Nonspecific) Immunity

First line of defense

- Intact skin
- Mucous membranes and their secretions
- Normal microbiota


Second line of defense

- Natural killer cells and phagocytic white blood cells
- Inflammation
- Fever
- Antimicrobial substances

Mammalian Blood Composition

- Plasma (55%) Cellular Elements– Water (45%)
 - Ions
 - Plasma Proteins
 - Nutrients
 - Waste
 - Gases
 - Hormones

- Erythrocytes
- Leukocytes
- Thrombocytes

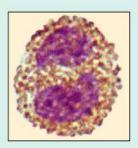
Formed Elements in Blood

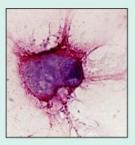
Formed Elements in Blood **TABLE 16.1** Type of Cell **Erythrocytes (Red Blood Cells) Platelets**

Type of Cell

Leukocytes (White Blood Cells)

A. Granulocytes (stained)


 Neutrophils (PMNs) (60–70% of leukocytes)


2. Basophils (0.5-1%)

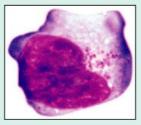
3. Eosinophils (2-4%)

4. Dendritic cells

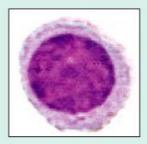

TABLE 16.1

Formed Elements in Blood (continued)

Type of Cell


Numbers per Microliter (µL) or Cubic mm (mm³)

B. Agranulocytes (stained)
1. Monocytes (3–8%)

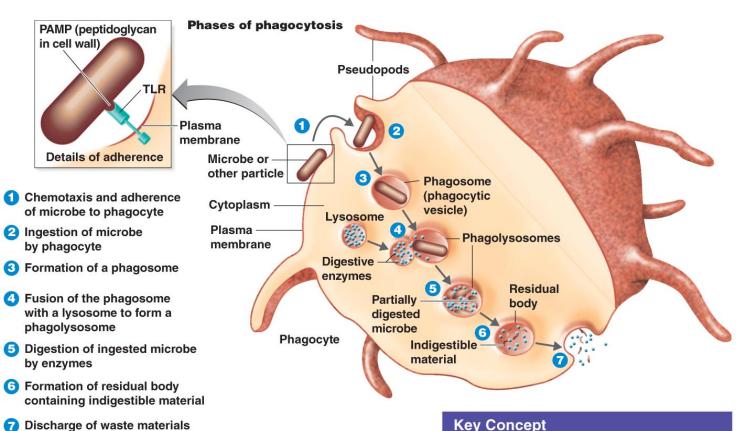

- 2. Lymphocytes (20–25%)Natural killer
 - Natural killer (NK) cells

• T cells

B cells

^{*}Discussed in Chapter 17.

Differential White Cell Count

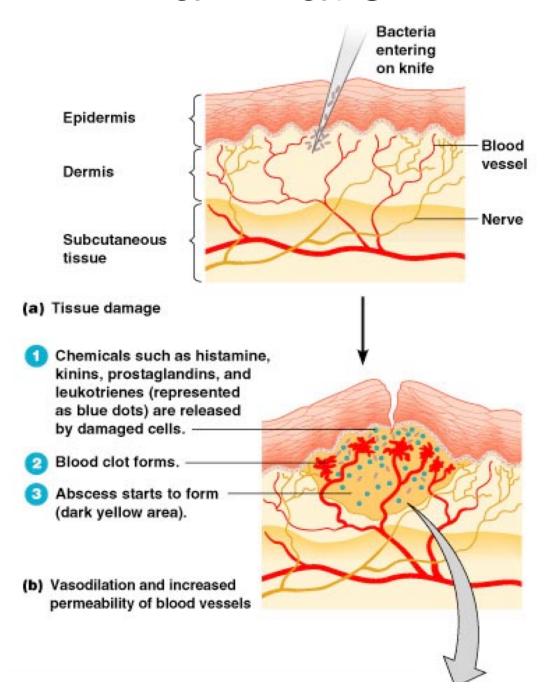

 Percentage of each type of white cell in a sample of 100 white blood cells

Neutrophils	60–70%
Basophils	0.5–1%
Eosinophils	2–4%
Monocytes	3–8%
Lymphocytes	20–25%

White Blood Cells

- Neutrophils: Phagocytic (most abundant)
- Basophils: Produce histamine
- Eosinophils: Toxic to parasites and some phagocytosis (worm infections)
- Dendritic cells: Initiate adaptive immune response
- Monocytes: Phagocytic as mature macrophages
 - Fixed macrophages in lungs, liver, and bronchi
 - Wandering macrophages roam tissues.
- Lymphocytes: Involved in specific immunity.

Figure 16.7


Key Concept

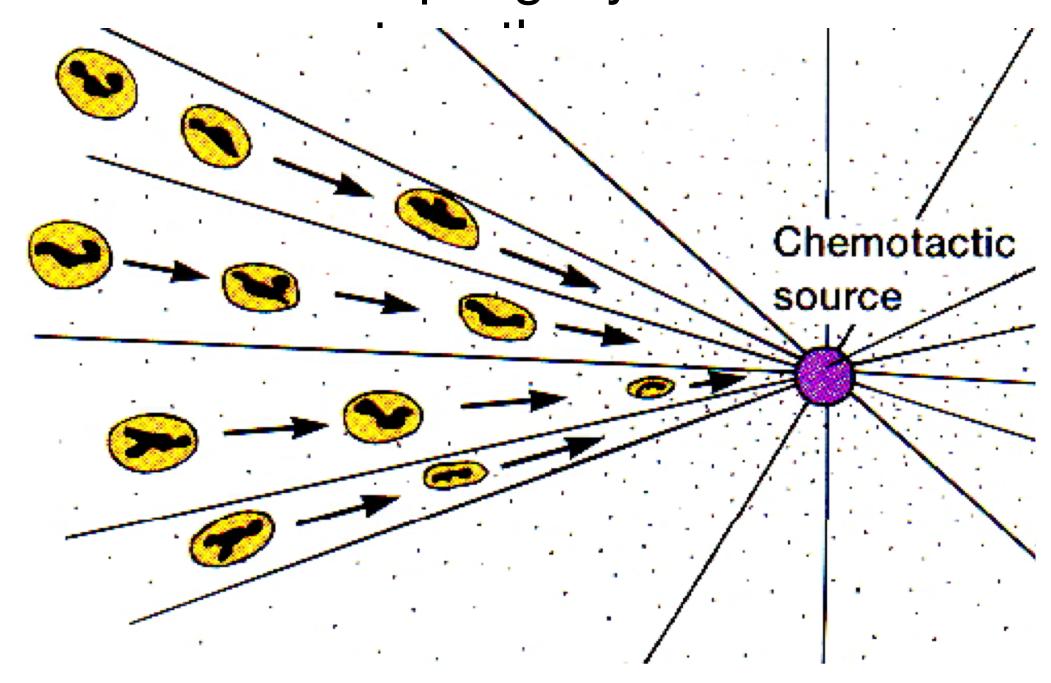
Phagocytes migrate to a site of infection and can destroy the infecting bacteria. The phases of phagocytosis are chemotaxis, adherence, ingestion, and digestion.

Microbial Evasion of Phagocytosis

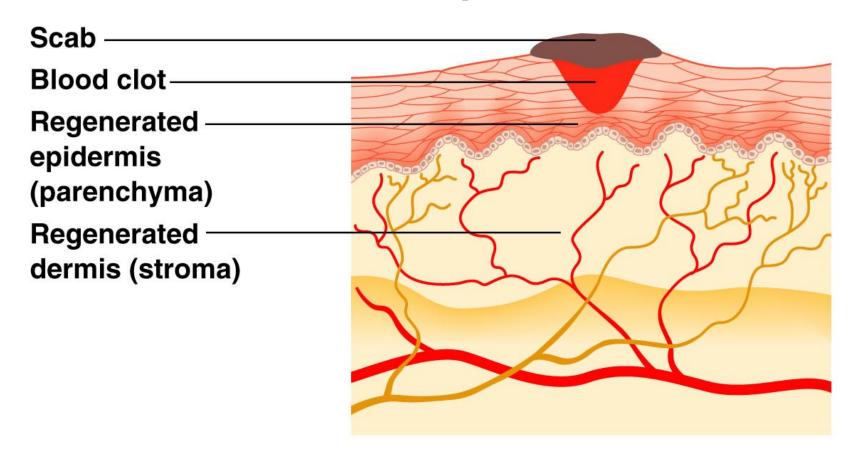
Inhibit adherence: M protein, capsules	Streptococcus pyogenes, S. pneumoniae
Kill phagocytes: Leukocidins	Staphylococcus aureus
Lyse phagocytes: Membrane attack complex	Listeria monocytogenes
Escape phagosome	Shigella, Rickettsia
Prevent phagosome-lysosome fusion	HIV, Mycobacterium tuberculosis
Survive in phagolysosome	Coxiella burnettii

Inflammation

Inflammation



Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.


Inflammation

- Redness
- Pain
- Heat
- Swelling (edema)
- Acute-phase proteins activated (complement, cytokine, and kinins)
- Vasodilation (histamine, kinins, prostaglandins, and leukotrienes)
- Margination and emigration of WBCs
- Tissue repair

chemotaxis: phagocytes attracted

Tissue Repair

(d) Tissue repair

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

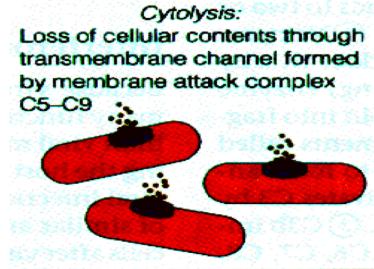
Innate Immunity		Adaptive Immunity (Chapter 17)
First line of defense	Second line of defense	Third line of defense
 Intact skin Mucous membranes and their secretions Normal microbiota 	 Phagocytes, such as neutrophils, eosinophils, dendritic cells, and macrophages Inflammation Fever Antimicrobial substances 	 Specialized lymphocytes: T cells and B cells Antibodies

Copyright © 2010 Pearson Education, Inc.

Fever

- Abnormally high body temperature
- Hypothalamus normally set at 37° C
- Gram-negative endotoxin cause phagocytes to release interleukin–1 (IL–1)
- Hypothalamus releases prostaglandins that reset the hypothalamus to a high temperature
- Body increases rate of metabolism and shivering which raise temperature
- Vasodilation and sweating: Body temperature falls (crisis)

Fever


- A moderate fever is beneficial to host defenses
- speeds up body defenses; slows down growth of pathogens
- Fever producing pyrogens are produced by activated macrophages as well as bacteria, viruses, and other microbes
 - Stimulate hypothalamus to raise body temp.
 - Thus cell metabolism increases and blood vessels constrict keeping heat within (cold skin/chills with fever)
 - But, above 105° F, convulsions and death may result
 - Infants >100°F and older children >102°F need medical attention!

Antimicrobial substances: The Complement System

- Complement (complement system): a series of over 30 blood proteins (produced by the liver) that circulate in the bloodstream and sequentially bond together to causes lysis of pathogens, inflammation and help phagocytosis
- "complements" the cells of the immune

system in destroying microbes

 can be a specific or nonspecific defense

Compliment Sysmtem

- Interferons (IFNs)
 messenger proteins produced by virusinfected cells
- tell surrounding cells to produce anti-viral protein
- also produced by genetic engineered microorganisms for injection as antiviral

drugs

 Viral RNA from an infecting virus enters the cell.

The infecting virus replicates into new viruses.

3 The infecting virus also induces the host cell to produce interferon mRNA (IFN-mRNA), which is translated into alpha and beta interferons.

4 Interferons released by the virus-infected host cell bind to plasma membrane or nuclear membrane receptors on uninfected neighboring host cells, inducing them to synthesize antiviral proteins (AVPs). These include oligoadenylate synthetase and protein kinase.

6 New viruses released by the virusinfected host cell infect neighboring host cells.

6 AVPs degrade viral mRNA and inhibit protein synthesisand thus interfere with viral replication.

Summary of Second Line of Defense

Table 16.2	able 16.2 Summary of Innate Immunity Defenses (continued)		
Component		Functions	
SECOND LINE OF DEFENSE			
Defensive Cells			
Phagocytes		Phagocytosis by cells such as neutrophils, eosinophils, dendritic cells, and macrophages.	
Natural killer	(NK) cells	Kill infected target cells by releasing granules that contain perforin and granzymes. Phagocytes then kill the infected microbes.	
Inflammation		Confines and destroys microbes and initiates tissue repair.	
Fever		Intensifies the effects of interferons, inhibits growth of some microbes, and speeds up body reactions that aid repair.	
Antimicrobial Su	ubstances		
Complement	system	Causes cytolysis of microbes, promotes phagocytosis, and contributes to inflammation.	
Interferons		Protect uninfected host cells from viral infection.	
Iron-Binding	Proteins	Inhibit growth of certain bacteria by reducing the amount of available iron.	
Antimicrobial	Peptides (AMPs)	MPs) Inhibit cell wall synthesis, form pores in the plasma membrane that cause lysis; and destroy DNA and RNA.	

Copyright @ 2010 Pearson Education, Inc.

Stress theory of disease

- Hans Selye
- A. Stressor: any force that elicits the stress response
 - invasion by pathogen
 - trauma
 - surgery
 - emotional conflict
 - performance demands
 - difficult relationships
 - life changes (positive or negative)

B. Stress

- the body's response to any stressor
- includes many measurable physiological changes intended to increase resistance to stressors
- also called the General Adaptation Syndrome
- 1. <u>Eustress</u>: beneficial stress; appropriate in degree and duration; produces optimum physical and mental function and resistance to pathogens
- 2. <u>Distress</u>: harmful stress; excessive in degree and/or duration; impairs physical and mental function; reduces resistance to pathogens
- Stress management